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Abstract

In this paper, we propose a reconstruction of the general architecture of an operating system.
In a first part, we start from the very principles of cybernetics, and study the general nature,
goals and means of operating systems. In a second part, we examine the crucial problem of
the expressiveness of a computing system, conspicuously comprising both operating system and
programming language. In a third and final part, we focus on particular services commonly found
in operating systems, and criticize current designs at the light of the previous theory. All along, we
sadly find that existing operating systems are deeply flawed, due to both historical and political
reasons; happily, the advent of Free Software removes the obstructions to progress in this matter.

∗This article was initially started as a manifesto for the Tunes project down in early 1995. For years, only the main
arguments in the first part were laid down and explained. I still haven’t finished it.
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1 Introduction

This paper aims at consistently demonstrating,
out of sufficiently clear definitions, that while cur-
rently available computing system software pro-
vide a lot of expedient services, their low-level
structure forbids them to provide useful services,
which leads to huge, inefficient, slow, unusable,
unportable, unmaintainable, unupgradeable, soft-
ware. This paper tries to explain why the current
design of ”system software” is deeply and unre-
coverably flawed, and proposes a new way for de-
signing computing systems such as to achieve real
utility. The proposed design method does not re-
quire but well-known, available, though sometimes
unjustly deprecated, technologies.

2 Operating Systems and
Utility

2.1 Utility

Between a good and a bad economist this consti-
tutes the whole difference - the one takes account of
the visible effect; the other takes account both of the
effects which are seen, and also of those which it is
necessary to foresee. Now this difference is enormous,
for it almost always happens that when the immediate
consequence is favourable, the ultimate consequences
are fatal, and the converse. Hence it follows that the
bad economist pursues a small present good, which
will be followed by a great evil to come, while the true
economist pursues a great good to come, - at the risk
of a small present evil.

– Frederic Bastiat, That Which is Seen, and
That Which is Not Seen [2]

We herein call useful something that saves
time, effort, money, strength, or anything valuable
in the long run and for a lot of people. Utility is
strictly opposed to Harmfulness, but we also op-
pose it to mere Expediency something being called
expedient if it saves such valuable things, but most
usually only in the short term, for special, per-
sonal, temporary purposes, and not (forcibly) for
general, universal or permanent purposes.

Utility and Expediency are relative, not abso-
lute concepts: how much you save depends on a
reference, so you always compare the utility of two
actions, even though one of the actions might be
implicit. Utility of an isolated, unmodifiable, ac-
tion is therefore meaningless. Particularly, from
the point of view of present action, utility of past

actions is a meaningless concept; however, the
study of the utility that such actions may have
had when they were taken can be quite meaning-
ful. More generally, Utility is meaningful only for
projects, never for objects. Projects here must
not be understood in the restricted meaning of
conscious projects, but in the more general one
of a consistent, lasting, dynamic behavior.

Note that projects can be considered in turn as
objects of a more abstract “meta-” system; but the
utility of the objectized project becomes itself an
object of study to (an extension of) the metasys-
tem, and should not be confused with the utility
of the studying metasystem. Sciences of man and
nature (history, biology, etc) lead to the careful
study of terrifying events and dangerous phenom-
ena, but the utility of such study is proportional
rather to some kind of relevance or amplitude of
the studied projects, than to their utility from the
point of view of their various actors.

Utility is a moral concept, that is, a con-
cept that allows pertinent discourse on its subject.
More precisely, it is an ethical concept, that is, a
concept colored with the ideas of Good and Duty.
It directly depends on the goal you defined for gen-
eral interest. Actually, Utility is as well defined by
the moral concept of Good, as Good is defined by
Utility; to maximize Good is to maximize Utility.

Like Good, Utility needs not be a totally or-
dered concept, where you could always compare
two actions and say that one is “globally” better
than the other. Utility can be made of many dis-
tinct, sometimes conflicting criteria. Partial con-
cepts of Utility can be refined in many ways to
obtain compatible concepts that would solve more
conflicts, gaining separation power, but losing pre-
cision.

However, a general theory of Utility is beyond
the scope of this article (those interested can find
a first sketch in J.S.Mill’s “Utilitarianism” [6], and
a more refined discussion in Henry Hazlitt’s “The
Foundations of Morality” [5]). Therefore, we’ll
herein admit that all the objects previously de-
scribed as valuable (time, effort, etc) are indeed
valuable as far as general interest is concerned.
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2.2 Information
Obviously, a man’s judgement cannot be better

than the information on which he has based it. Give
him the truth and he may still go wrong when he
has the chance to be right, but give him no news or
present him only with distorted and incomplete data,
with ignorant, sloppy or biased reporting, with propa-
ganda and deliberate falsehoods, and you destroy his
whole reasoning processes, and make him something
less than a man.

– Arthur Hays Sulzberger

Judgements of Utility deeply depend on the
knowledge of the project being judged, of its start-
ing point, of its approach. Now, humans are
no gods who have universal knowledge to base
their opinions upon; they are no angels who by
super-natural ways, receive infuse moral knowl-
edge. Surely, many people believed it, and some
still do. But everyone’s personal experience, and
mankind’s collective experience, History, show
how highly improbable such things are. With-
out any further discussion, we will admit an even
stronger result: that, by the finiteness of the struc-
ture of the human brain, any human being, at any
moment, can only handle a finite amount of infor-
mation.

This concept of information should be clarified.
The judicial term from the Middle Ages slowly
took the informal meaning of the abstract idea
of elements of knowledge; it was only with sev-
enteenth century mathematicians that a formal
meaning could timidly appear, that surprisingly
found its greatest confirmation in the nineteenth
century with thermodynamics, a branch of physics
that particularly studied large dynamical systems.
Information could thus be formalized as the oppo-
site of the measurable concept of entropy. The in-
formation we have irreversibly decreases as we look
forward or backward in time, beyond the limits of
our knowledge, on this side of these limits being
present. That is, information is a timely notion,
valid only in dynamical systems. And such is Life,
a dynamical system.

As for Utility before, there needs not be a uni-
versal total ordering on Information; what we most
often have is partial orderings, and each of us has
to try arbitrarily choose finer orderings when bas-
ing a decision upon equivocal information. For
information is also an moral concept, though it
is not until late twentieth century, with cyber-
netics, that the deep relationship between infor-
mation and morals explicitly appeared. Few peo-

ple remember cybernetics as something else than
a crazy word associated to the appearance of in-
formation technology, but we invite the reader to
consult the original works of Norbert Wiener on
the subject [7]. However, this relationship had
been implicitly discovered by liberal economists
of the eighteenth and nineteenth centuries, then
rediscovered by biologists studying evolution, and
surely, many have always intuititively felt this rela-
tionship. What allowed to make it explicit might
be the relativization of ethics as something that
was not to be taken as known and granted, but
first as unknown and more recently as incomplete.

Moral judgments depend on the information
we have, so that in order to make a better judge-
ment, we must gather more information. Of
course, even though we might have rough ways to
quantify information, this doesn’t make elements
of information of same quantity interchangeable;
What information is interesting depends on the in-
formation we already have, and on the information
we can expect to have. Now, gathering informa-
tion itself has a cost, that physicists may associate
to free energy, which is never zero, and must be
taken into account when gathering information.

Because the total information that we can han-
dle is limited, any inadequate actual information
that be gathered would be to the prejudice of more
adequate potential information. Such inadequate
information is then called noise; noise is worse
than lack of information, because it costs resources
that won’t be available for adequate information.
Thus, in our dynamic world, the quest of informa-
tion itself is subject to criteria of utility, and the
utility of information is its pertinency, its propen-
sity to favorably influence moral judgements. As
an example, the exact quantization of information,
when it is possible, itself requires so much infor-
mation, that it is seldom worth to be sought. Of
course, pertinency in particular is not more an ab-
solute concept than utility in general. When a
criteria for pertinency is implicitly available, we
might use the term“Information” for raw informa-
tion, and “Knowledge” for pertinent information.

So to gather information in better ways, one
must scan the widest possible space of elements of
knowledge, which is the essence of Liberty; but the
width of this knowledge must be measured not in
terms of its cost or of its interest in case it was
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true, but in terms of its pertinency and of its so-
lidity, which is the essence of Security.

These are dual, inseparable aspects of Knowl-
edge, that get their meaning from each other. Any
attempt to priviledge one upon the other is point-
less, and in the past and present, such attempts
have led to many a disaster: trying to promote
some liberty without corresponding security leads
to chaos, whereas promoting security without as-
sociated liberty leads to totalitarianism.

Reality and potentiality, finiteness of knowl-
edge, world as a dynamic system, relation between
information and decision, duality of liberty and se-
curity, all these are parts of a consistent (we hope)
approach of the world, that we will admit in the
rest of this paper, at least on the considered sub-
jects. A more detailed study of these moral issues
per se would certainly be quite interesting, but the
authors feel that such study ought to be postponed
to another paper, and invite readers to refer to the
bibliography (and contribute to it), so as to focus
on the goal of this article, discussion about Com-
puter Systems, whereas these moral concepts are
a means.

2.3 Computers
The highest goal of computer science is to auto-

mate that which can be automated.

– Derek L. VerLee

Computers are machines that handle quickly
large amounts of exact discrete information, and
interact with the external world, according to a
set of exact discrete directives called “programs”.
This makes them most suited to apply concepts
from the above-mentioned information theory; ev-
erywhere else in life, information is approximate
continuous, and difficult to quantize. Actually, the
histories of information theory and of computers,
that are information technology, are deeply inter-
related; but these histories escape the subject of
this article. Just note that being a computer is an
abstract concept independent from the actual im-
plementation of a computer: if most current com-
puters are made of silicon transistors, their an-
cestors were made of metallic gears, and no-one
knows what their remote successors will be made
of.

Computers are built and programmed by men
and for men, with earthly materials and purposes.

Hence the utility of computers, among other char-
acteristics, is thus to be measured like the utility
of any object and project in the human-reachable
world, relatively to men. And, because what com-
puters deal with is information, their utility lies in
what will allow humans to access more informa-
tion in quicker and safer ways, that is to commu-
nicate better through them computers with other
humans, with nature, with the universe.

Again, Utility criteria should not only compare
the visible value of objects, but also their cost, of-
ten invisible, in terms of what objects where dis-
carded for it. Cost of computer information in-
cludes the time and effort spent at manufacturing
or earning money to buy computer hardware and
software, but also the time and effort spent before
the computer to explain it the work you want to be
done, and the time and effort spent verifying, cor-
recting, trying again the obtained computer pro-
grams, or just worrying about the programmed
computer crashing, preparing for possible or even-
tual crashes, and recovering from these. All this
valuable free energy might have been spent much
more profitably at doing other things, and is part
of the actual cost of computerware, even when not
taken into account by explicit financial contracts.
We will stress on this point later.

So to see if computers in general are a use-
ful tool, we can take the lack of computer as the
implicit reference for computer utility, and see
how computers benefit or not to mankind, com-
paring the result and cost. Once properly pro-
grammed, computers can do quickly and cheaply
large amounts of simple calculations that would
have required a large number of expensive human
beings to manage (which is called“number crunch-
ing”); and they can repeat relentlessly their cal-
culations without committing any of those mis-
takes that humans would undoubtly have made.
When connected to “robot” devices, those calcu-
lations can replace the automatic parts of work,
notably in the industry, and relieve humans from
the degrading tasks of chain work, but also con-
trol machines that work in environments where
no human would survive, and do all that much
more regularly and reliably than humans would
do. Only computers made possible the current
state of industry and technology, with automated
high-precision mass production, science of the very
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small, the very large, and the very complex, that
no human senses or intelligence could ever have
approached otherwise.

Thus, computers save a great amount of hu-
man work, and allow things that no amount of
human work could ever bring without them; not
only are they useful, but they are necessary to the
current state of human civilization. We let the
reader meditate on the impact of technology on
her everyday life, and compare it to what was her
grandmother’s life. That this technology may be
sometimes misused, and that the savings and ben-
efits of this technology be possibly misdistributed,
is a completely independent topic, which may hold
for quite any technology, and which will not be
otherwise commented in this article.

2.4 Limits of Computers

Some only see in computer’s utility a matter of
raw performance, a quantitative progress, but not
a qualitative one, at least, nothing qualitatively
better than what other tools bring about. However
we already saw that beyond their performance, be-
yond the volume of information handled and the
speed at which it is handled, which already suffice
to make computers a highly desirable tool, com-
puters bring something fundamentally more im-
portant than raw information or raw energy, some-
thing that is seldom explicitly acknowledged: a
new kind of reliability that no human effort can
achieve.

Not only can computers perform tasks that
would require enormous amounts of human work
without them, and do things with more precision
than humans, but they do it with reliability that
no human can provide. This may not appear as
very important, not even as obvious, when the
tasks undertaken are independent one from the
other, when erroneous results can be discarded or
will be compensated somehow by the mass of good
results, or when on the contrary the task is unique
and completely controlled by one man. But when
the failure of just one operation involves the fail-
ure of the whole effort, when a single man cannot
warranty the validity of the task, then computers
prove inestimable tools by their reliability.

Of course, computers are always subject to fail-
ures of some kinds, to catastrophes and accidents;
but computers are not worse than anything else

with respect to such events, and can be arbitrarily
enhanced in this respect, because their technol-
ogy is completely controlled. However, not only
is it not a problem particular to computers, but
computers are most suited to fight this problem:
unpredictable failures are the doom of the world as
we live, where we always know a tiny finite piece of
information, so even if we can sometimes be fairly
sure of many things, and can never be completely
sure about anything, as we can never totally dis-
card the event of some unexpected external force
significantly perturbating our experiments. The
phenomenon is the most pronounced with humans,
where every individual is such a complex system
by himself, that one can never control all the pa-
rameters that affect him, can never perfectly re-
produce them; so there are always difficulties in
trusting a man’s work, even when his sincerity is
not in doubt. On the contrary, by their very me-
chanical nature of their implementation, by the
exactitude of their computations, which derives
from their very abstract design principle, comput-
ing is both a predictable and a reproducible exper-
iment; it can be both mathematically formalized,
and studied with the tools of the physicists and en-
gineers; computer behavior is both producible and
reproducible at will; and this founds computer re-
liability: you can always check and counter check
a computer’s calculations, experiment with them
under any condition one requires before one will
trust them.

We see that computers allow to accumulate re-
liability like nothing else in the human-reachable
world, though this reliability must be earned in
the hard way, by ever-repeated proofs, checks, and
tests. In fact, this reliability is one of the two faces
of information, which is what information technol-
ogy is all about, of which computers as we know
them are the current cutting edge.

The problem with computers, the absolute
limit to their utility, is that by the same mechani-
cal virtues that make us trust their answers as the
result of understandable and double-checkable for-
mal computations, they somehow can’t create in-
formation that isn’t formally derivable from their
input, and in as much as we introduce random-
ness and heuristics in their input to simulate more
creative behavior, we are not able to trust the
answers anymore. That is, computers may re-
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veal reveal potential trust in existing information;
they may build trustable information from previ-
ous trustable information; they may generate un-
trustable information at random; but they can-
not generate new trustable information about the
external world, least it be tautological. Any new
trustable information that lies in a computer must
derive through natural laws of logic from the work
of men who built and programmed the computers,
and from the external world with which the com-
puter interacts by means of sensors and various
devices.

Hence the limits of computers are men: what
they can program in a computer, what the de-
vices they hook into computers produce, what
they teach the computer to do with all the input.
If a man misdesigns or misprograms a computer,
if he feeds it with improper data, if he puts it in
an environment not suitable for correct computer
behavior, then the computer cannot be expected
to yield any correct result. One can fully trust ev-
erything he sees and tests about a computer, but
as computers grow in utility and complexity, there
are more and more things one cannot personally
see and test about them, so one must rely on one’s
fellow human beings to have checked them. Again,
this is not worse than anything else in the human
world; but for computers as well as for anything
else, these are hard limits of which we should all
be conscious.

2.5 Computing as a Project

Man is surely a limit to the power of computers, in
that computers are made by man, and can be no
better than man makes them. But this is not to
be understood individually, as computers are not
each the work of one man, but are collectively the
work of mankind. Computing is a global project.

Like any product of civilization, computers de-
pend on a very rich technological, economical, and
social context, before they can even exist, not to
talk about their being useful. They are not the
work of a single man, who would be born naked
in a desert world, and would build every bit of
them from scratch. Instead, they are the fruit of
the slow accumulation of human work, of which
the foundations of civilization participate at least
as much as the discoveries of modern scientists.
The context is so necessary, that most often it is

implicit; but one shouldn’t be mistaken by this im-
plicitness and forget or deny the necessity of the
context. Actually, this very context, result of this
accumulation process, is what Civilization is.

But again, the characteristic of information
technology, is that the information you manage to
put in it can be made to decay extremely slowly,
as compared to objects of same energy: we can ex-
pect data entered today in a computer, that is in-
teresting enough to be copied once every ten years
at least, to last as long as information technology
will exist, that is, as long as human civilization
persists. Of course, huge monuments like the egyp-
tian pyramids are work of men that decay slowlier,
need less care, and resist to harsher environments,
so may last longer; but their informative yield is
very weak, as compared to their enormous cost. If
only slowness to decay was meant and not infor-
mational yield, then nuclear wastes would be the
greatest human achievement!

Now computing has the particularity, among
the many human collective projects, and as part
of mankind being its own collective project, that
it can be contributed to in a cumulated way for
years. For this reason, we can have the greatest
hope in it, as a work of the human race, as a tool
to make masterpieces last longer, or as a master-
piece of its own. Computing has already gained
its position among the great inventions of Man,
together with electricity, writing, and currency.

This whole paper tackles the problems of soft-
ware as an evolving domain. If ever software set-
tles and stabilizes, or comes to a very slow evo-
lution, then the phenomena described in this pa-
per may cease to be dominant in the considered
domain. However, because life is movement, as
long as there will be life, there will be a domain
where these phenomena are of importance. Be-
sides, the authors are confident that computer
software, whatever it will be like, will be a lively
domain until it possibly reaches AI.

2.6 Computing versus Artificial In-
telligence

Alan Turing thought about criteria to settle the
question of whether machines can think, a question
of which we now know that it is about as relevant as
the question of whether submarines can swim.

– E.W. Dijkstra
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Let us justify the persistence of Computing as
a Project, even when faced with this alleged doom
of it: Artificial Intelligence.

Many dream, hope, worry, predict or other-
wise expect that some day, the cumulated work
invested in computing will allow humans to cre-
ate some computer-based being, which they call
“artificial intelligence”, or more simply, AI. Such
AIs would rival with their human creators as for
“intelligence”, that is, their creativity, their ability
to undertake independently and voluntarily useful
projects; they dream (or some of them have the
nightmare) that mankind engenders a next step in
evolution by non-genetical means. According to
some people, such AI would be the End of Com-
puting as a Project, since humans wouldn’t need
to program anymore, leaving the task to AIs.

Now, should this dream come true (the even-
tuality of which won’t be discussed in this article),
by Information Theory’s version of Cantor’s diag-
onal argument, the workings of AIs must globally
surpass the understanding of AIs themselves, and
hence of humans, if the AIs are similarly endowed
as humans. This holds even though the general
principles behind the functioniong of AIs might
be understood: as with physics, the knowledge of
elementary laws doesn’t imply understanding of
whole phenomena, for the formidable context in-
volved in anything but the simplest applications
(and the most useless, as far as “intelligence” is
meant) would make it impossible for the most de-
veloped human or artificial brain to apprehend.

The latter argument does not question the pos-
sibility of AI as an eventual human work: there
is plenty of evidence that systems governed by
a few human-understandable, human-enforceable
rules can generate ununderstandable chaotic be-
havior1. Rather, the argument means that if we
replace in all the current discussion “human” by
“sentient”, with AIs being a new kind of different
(superior or not) sentient beings, the situation of
computing would remain essentially the same.

Indeed, Computing is an activity characterized
by exact formalizability and as complete under-
standing as desired of running programs, with the
choice and evolution of the programs being di-
rected by human (sentient) beings.

AI, if it ever appears, will not quite be com-
puting as we know it anymore, yet will need Com-
puting even more than we do now.

Maybe this AI will use a computer as an un-
derlying structure, and will need most advanced
computing techniques to be deployed; but the AI
itself will not be a computer as we defined it, and
querying the AI will not be computing anymore,
though some may think that the ultimate goal of
computing be to transcend computing in such way.

Anyway, current design of computing systems,
as we will show, greatly limits the potential of
computer software into what a few programmers
can fully understand; hence, until this design is
replaced, AI will stay a remote dream. And even
when and if this dream comes true, the problems
we describe may be food for thought for the AIs
that would replace current human readers. Com-
puting is will always be a Project for sentient be-
ings, be them AIs instead of humans.

2.7 Computing Systems

Computer Science is no more about computers
than astronomy is about telescopes.

– E. W. Dijkstra

We herein call Computing System any dynamic
system where what interests us is the exact in-
formation contained by part of it. Note that a
computing system is not quite the same as a com-
puter system. In a computer system, the com-
puter is a static tool used in the project, but not
part of it. In a computing system, the computer
(or most probably only its program) is the very
dynamic project being considered. Computer sys-
tems have been the subject of study of many very

1Even simple purely mathematical objects like the digits of number π or the Mandelbrot set have behavior beyond
comprehension, not to talk about Chaitin’s “number of wisdom” Ω [3]. Physical systems are even harder to compre-
hend, and the most precise computer simulations of even the simplest non-linear dynamic systems quickly diverge into
chaos. Finally, intrinsicly ununderstandable is the chaos that results from competitive interaction with a large number
of sentient, as witnesses the stock market, for instance, for any perceived regularity self-defeatingly gathers against it
the behavior of those who perceive it.

All in all, there are many sources of chaos, from mathematical complexity, physical randomness, competition with
other systems and interaction with human beings, that could give birth to “intelligent” behavior in machines. The whole
problem is for AI researchers to develop tools to identify and harness this chaos, so as to take advantage of it.
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proficient people, who have published a great num-
ber of most interesting books on it. Computing
systems are the subject of this article, upon which
we’ll try to bring new lights.

As an example, a given modern washing ma-
chine is often a very useful computer system,
where a static program manages the operations;
but its utility lies entirely in the washing of clothes,
so that as a computing system, it is not excessively
thrilling. The development of washing machines,
on the other hand, contains a computing subsys-
tem of its own, which is the development of better
washing programs; this computing system might
not be the most exciting one, but it is neverthe-
less an interesting one.

Similarly, a desktop computer alone might be a
perfect computer system, it won’t be a very inter-
esting computing system until you consider a hu-
man, perhaps one among many, sitting in front of
it and using it. And conversely, a man alone with-
out computer might have lots of ideas, he won’t
constitute a very effective computing system until
you give him the ability to express it into com-
puter hardware or software. Note that desktop
publishing in a business office is considered as be-
ing some kind of software, but that, as long as this
information is not spread, copied and manipulated
much by computers, as long as the writing is very
redundant but not automated, it is not a very in-
teresting computing system. Developing tools to
automate desktop publishing, on the other hand,
is an interesting computing system; even desktop
publishing, if it allowed to take any tiny active
part in the development of such tools, would be
an interesting computing system; unhappily, there
is a quasi-monopoly of large corporations on such
development, that greatly restricts the amount of
computing in that system, which we’ll investigate
in following chapters.

A most interesting Computing System, which
particularly interests us, is made of all interact-
ing men, computers, and particles in the Universe,
where the information being considered is all that
encoded by all known computers; we may call it
the Universal Computing System (UCS). Actually,
as the only computers we know in the Universe are
on Earth, or not far from it in space, it is the same
as what we might call the Global Computing Sys-
tem (GCS); however the two might diverge from

each other in some future, so let’s keep them sep-
arate.

Now, the question that this article tries to an-
swer is “how to maximize the utility of the Uni-
versal Computing System ?”. That is, we take the
current utility of computers for granted, and ask
not how they can be useful, but how their util-
ity can be improved, maximized. We already saw
that this utility depends on the amount of perti-
nent information such systems yield as well as the
free energy they cost. But to answer this ques-
tion more precisely requires at the same time a
general study of Computing Systems in general,
of the way in which they are or should be orga-
nized, and a particular study of current, past, and
expected future computing systems, that is, where
the Universal Computing System is going if we’re
not doing anything.

2.8 Subsystems

When studying a dynamic system, one must al-
ways place oneself in an external, “meta” system,
and choose some “representation” of the studied
system. What kind of meta-system(s) and repre-
sentation(s) to choose is a difficult question; again,
the representations are better that allow to extract
more information from the study of the system,
which needs not be a total ordering among repre-
sentations.

Particularly, one could try to formalize the
UCS with the set of the physical equations of its
constituting particles. While such thing might be
“theoretically possible”, the complexity of the ob-
tained equations would such that any direct treat-
ment of them would be impossible, while the exact
knowledge of these equations, and of the param-
eters that appear in it, is altogether unreachable.
Thus, this formalization is not very good accord-
ing to the above criterion.

A fundamental tool in the study of any system,
dynamic or not, called analysis, consists into divid-
ing the system into individual subsystems, such
that those subsystems, and the interactions be-
tween those subsystems be as a whole as simple as
possible to formalize. Note that these subsystems
need not (and often should not) form an homoge-
neous mass of (quasi-)isomorphic systems; on the
contrary, the richness of information in the total
system will depend on the fact that every subsys-
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tem be specialized in its way, and doesn’t waste
its resources by merely being redundant with its
neighbours.

For computing systems, the basic, obvious
though not sole possible analysis is to consider
computers and their human users as the individ-
ual subsystems. Because information flows quickly
and broadly inside each of these subsystems, but
comparatively slowly and tightly between them,
they can be considered as decision centers, each of
which takes actions depending mostly on its inter-
nal information, and slowly interacting with each
other “on purpose” (because according to these in-
ternal informations).

Humans interact with other humans and com-
puters; computers interact with other computers
and humans. But while the stable, exact, objec-
tized information lies in the computers, the dy-
namic nature of the project can be traced down to
the humans; thus, even though only the comput-
erized information might be ultimately valuable
to the computing system, the information flow
among humans, is a non-negligible aspect of the
computing system as a project.

Surely, this is not the only possible way to an-
alyze computing systems; but it is a very infor-
mative one, and any “better” analysis should take
all of this into account. For instance, one relevant
approach is to refine the subdivision of computer
activities according not just to corresponding in-
dividual human computer users of these activities,
but according to division of trust between these
humans under the various roles that they assume:
the same person may assume several roles during
his computer life, and the trust one places in var-
ious programs (including those developed by one-
self while assuming another role) varies according
to these roles.

Anyway, the point is that what counts when
analyzing a system is the ability of the analysis to
yield relevant information at a competitive cost.
A “canonical representation” in terms of atoms
and waves, while possibly being a valid analysis
of a system, needs not be the most interesting
one. Computers may be made, from the hardware,
physical point of view, of electronic semiconductor
circuitry and other substratum; from the informa-
tion point of view, this is just transient techno-
logical data; tomorrow’s computers may be made

of a completely different technology, they will still
be computers. Similarly, living creatures, among
which humans, are, as far as we know, made of or-
ganic molecules; but perhaps on other places in the
universe, or in other times, things can live that are
not made of the same chemical agents (actually,
there is genetic variation in the molecular compo-
sition of even known living creatures).

What makes creature living is not the matter
of which it is made (or else, the soup you obtain
after reducing a man to bits would be as living as
the man). What makes the living creature is the
structure of internal and external interaction that
the layout of matter implements. A chair is not
a chair because it’s made of wood or plastic, but
because it has such a shape that a human can sit
on it. What makes the thing what you think it
is, are abstract patterns that make you recognize
it as such, that constitute the idea of the thing.
And as for computing systems, the idea lies in the
flow of information, not the media on which the
information flows or is stored.

2.9 Operating Systems

Often in a discussion, I will ask the other person to
define some term. It is not that I believe that terms are
absolute, and want to test whether the person knows
its One True Meaning. On the contrary, words are
conventions, and it is necessary to negociate a com-
mon meaning so a sane discussion be possible. For a
constructive discussion is a negociation.

– Faré

Now, we can define what an Operating System
is (for which we use the acronym OS), that the
project of this article is all about.

Given a collection of subsystems of a cyber-
netical systems, we call “Common Background”
the information that we can expect every of these
subsystems to have. For instance, if we can ex-
pect most Europeans to wear socks, then this ex-
pectation is part of the Common Background of
Europeans. If we can expect all the computers
we consider to use binary logic, then this fact is
part of the Common Background for those com-
puters. This Common Background can thus con-
tain both established facts and probabilistic ex-
pectations. The Common Background for a
collection of human beings is called their collec-
tive culture, or even their Civilization, if a large,
(mostly) independent collection of human beings is
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considered. The common background for a collec-
tion of computers is called their Operating System.

The concept of Common Background appears
in any cybernetical system where a large enough
number of similar subsystems exist. Common
Backgrounds grow in complexity only if those sub-
systems do get more complex too, and the large
number of such systems means that these should
be self-replicating, or more precisely correlated to
self quasi-replication. To sum it up, an interest-
ing concept of Common Background is most likely
to appear only when some kind of “life” has de-
veloped in the cybernetical system, or when we’re
examining a large number of specifically consid-
ered similar systems.

Note that the “similarity” between the subsys-
tems tightly corresponds to the existence of infor-
mation common to the subsystems, that consti-
tute the Common Background. In no way does
this similarity necessarily correspond to any kind
of “equality”, among the subsystems: how could
two subsystems be exactly the same, when they
were specifically considered as disjoint subsystems,
made of different atoms ? The similarity is an ab-
stract, moral, concept, which must be relative to
the frame of comparison that makes the considered
information pertinent; a moral frame of Utility can
do, but actually, any moral system in the widest
acception can, not only those where an order of
“Good” was distinguished. On the other hand,
finding a lot of similarities in somehow (or com-
pletely) impertinent subjects (such as gory “im-
plementation details”) doesn’t imply an interesting
common background; finding a few similarities on
pertinent subjects might not be sufficient to imply
an interesting common background either. (tech-
nical remark: given a digital encoding of things,
quantifying the level of interest of a common back-
ground might be expressed in terms of conditional
Kolmogorov complexity.)

If we consider humans in the World, can we
find cells that are “exactly the same” on distinct
humans ? No, and even if we could find exactly the
same cell on two humans, it wouldn’t be meaning-
ful, just boring. Yet you can nonetheless say that
those two humans share the same ideas, the same
languages and idioms or colloquialisms, the same
manners, the same Cultural Background. And this
is meaningful, because these are used to commu-

nicate, and greatly affect the flow of information,
etc. Genetical strangers who were bred together
share more background as regards society than
genetical clones (twins) who were separated after
their being born.

It’s the same with computers: computers of
the same hardware model, having large portions of
common implementation code, but running com-
pletely different “applications” that have nothing
conceptually common to the human user, might
be considered as sharing little common informa-
tion; on the contrary, even though computers may
be of completely different models, of completely
different hardware and software technologies, thus
sharing no actual hardware or software implemen-
tation, they may still share a common background,
that enables them to communicate and understand
each other, and react similarly to similar environ-
ments, so that to the human users, they behave
similarly, manipulate the same abstraction. That
we called the Operating System.

2.10 Controversy about the Defini-
tion for an OS

When words are unfit, speech is unadapted and
actions are unsuccessful

– Confucius

There have always been many lengthy argu-
ments everytime someone proposed any definition
for what an Operating System is. Many will ob-
ject to the above definition of an OS, because it
doesn’t fit the idea they believe they had of what
an OS is. Now, let’s see the requirement for such a
definition: as a definition, it should statically ref-
erence a consistent concept, independently enough
from space, time, and current state of society and
technology, so as to enable discourse about OSes in
general; as applying to an existing term, it should
formalize the intuitive idea generally vehiculated
by this term, and as much as possible coincide
with its common usage, while staying consistent
(of course, where common usage is inconsistent,
the definition cannot stick to the whole of it).

The definition the from previous chapter does
fulfill these requirements, and it is the only one
known to date by the author that fulfills them.
This definition correctly identifies all the programs
and user interface of Unix, DOS, Windows*, or
Macintosh machines to be their respective OS, the
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class of similar machines being considered at each
time, because they are what the user/programmer
can expect to have when encountering such ma-
chines. It does support both the points of view
that such software or feature, is an OS or part of
the OS, or that it is not, depending on the set of
machines being considered.

By “Operating System”, people intuitively
mean the“basic”software available on a computer,
upon which the rest is built.

The first naive definition for an OS would thus
be to define it by “whatever software is available
with the computer when you purchase it”. Now,
while this sure unambiguously defines an OS, the
according pertinency is very poor, because, by be-
ing purely factual, the definition induces no pos-
sible moral statement upon OSes: anything that’s
delivered is an OS, whatever it is. You could equiv-
alently write some very large and sophisticated
software that works, or some tiny bit of software
that doesn’t, still it’d be OS, by the mere fact it is
sold with the computer; one could buy a computer,
remove whatever was given with it, or bundle com-
pletely different packages to it, then resell it, and
whatever he resells it with would be an OS. This
definition, while it embodies some wisdom about
the fact that the concept of OS should capture the
features of actually deployed software, is so poor
as to be unusable, because it isn’t based on a rel-
evant notion of deployment.

Then, one could decide that because this ques-
tion of knowing what an OS is is so difficult, it
should be let to the high-priests of OSdom, and
that whatever is labelled “OS” by their acknowl-
edged authority should be accepted as such, while
what isn’t should be deemed with the utmost de-
fiance. While this puts the problem back, this is
still basically the same attitude of accepting fact
for reason, with the little enhancement that the
rule of force applies to settle the fact, instead of
raw facts being blindly accepted. This is abdi-
cating reason in favor of religion. Now, the high-
priests of computing that are to give a definition
for an OS are not more endowed than the common
computer user to give a good definition. Either
they only abuse their authority to give unbacked
arbitrary definitions, or they have some reason-
able argument to back their definition. Since we’re
studying computer science, not computer religion,

we can but contemptuously ignore them in the first
case, and focus on their arguments in the second
case. In any case, such definition by authority is
useless to us.

Those who escaped the above traps, or the
high-priests of the second trap, will need other
criteria to define an OS. They might most obvi-
ously try to define an OS as a piece of software
that does provide such and such services, to the
exclusion of any other services, each taking the
list of provided services from their favorite OS or
OS-to-be. Unhappily, because different people and
groups of people have different needs and history,
they would favor differently featured OSes. Hence,
they would all define an OS differently, and ev-
ery such definition would disqualify every past,
present and future systems, but the few ones con-
sidered from being “OSes”. Hence, this conception
leads to endless fights about what should or not be
included in a piece of software for it to be an OS.
When human civilization rather than just com-
puter background was concerned, these would be
wars and killings, crusades, colonizations and mis-
sions, in the hope to settle the one civilization over
barbarism. Even without fights, we see that com-
pletely different sets of services equally qualify as
OSes, much like completely different civilizations
like the ancient Greek and ancient Chinese civiliza-
tions, while being completely different, both qual-
ify as civilizations, not talking about other more or
less primitive or sophisticated civilizations. Such
a definition for an OS cannot be universal in time
and space, and only the use force can have one
prevail, so it becomes a new religion. Again, this
is a poor definition for an OS.

The final step, as presented in the preceding
chapter, is to define an OS as the container, in-
stead of defining it as the contents, of the com-
monly available computer services; in other words,
we give an intentional definition for an OS, instead
of looking for an extensional definition. We saw
that OS was to Computing Systems what Civiliza-
tion was to Mankind; actually Computing Systems
being a part of the Human system, their OSes are
the mark of Human Civilization upon Comput-
ers. The language, habits, customs, scriptures,
of some people, eating with one’s bare hands, a
fork and knife, or chopsticks, don’t define whether
these people have a civilization or not; they define
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what their civilization is. Similarly the services
uniformly provided by a collection of computers,
the fact that a mouse or a microphone be used as
an input device, that a video screen or a braille
table be used as an output device, that there be a
built-in real-time clock or not, those features don’t
define whether those computers have an OS or not,
but rather they define what is this OS they have2.

Our definition allows us to acquire knowledge,
while refusing to endorse any dogma about what
we can’t know; this is the very principle of in-
formation against noise, of science against meta-
physics. It separates the contingencies of life from
the universal concept of an OS. An OS is the
common background between the computers of a
considered collection. This moves the question of
knowing what should or not be in an OS from a
brute fight between OS religions, from the mutual
destruction of dogmas, to a moral competition be-
tween OSes, to the collective construction of infor-
mation. That’s why we claim that our definition
is more pertinent than the other ones, hence more
useful, by an argument previously explained.

2.11 Operating System Utility
In an external environment which constantly

changes and in which consequently some individuals
will always be discovering new facts, and where we
want them to make use of this new knowledge, it is
clearly impossible to protect all expectations. It would
decrease rather than increase certainty if the individ-
uals were prevented from adjusting their plans of ac-
tion to the new facts whenever they became known to
them. In fact, many of our expectations can be ful-
filled only because others constantly alter their plans
in the light of new knowledge. If all our expecta-
tions concerning the actions of particular other per-
sons were protected, all those adjustments to which
we owe it that in constantly changing circumstances
someboy can provide for us what we expect would be
prevented. Which expectations ought to be protected
must therefore depend on how we can maximize the
fulfilment of expectations as a whole.

– F.A. Hayek, Law, Legislation and Liberty, I.4.e
[4]

Let it be clear that the concept of Operating
System does not apply pertinently to machines
that do not evolve, that do not communicate with
other machines, that do not interact with humans.

Such machines need complete, perfect, highly-
optimized stand-alone software, adapted just to
the specific task they are meant to accomplish.
Whatever can be found in common among many
such machines isn’t meaningful to running those
machines, as this does not influence the way infor-
mation flows in the system.

However, as soon as we consider further pos-
sible versions of a “same” piece of software, as
soon as we consider its incomplete development
and maintenance process, the way it interacts with
other pieces of software, whether in a direct or re-
mote fashion, as soon as it has any influence on
other software, be it through the medium of hu-
mans who are examining it before to build the
other pieces software (or while building these),
then we are indeed talking about flow of informa-
tion, and the concept of OS does become mean-
ingful.

2I’ve received reproaches about my definition including in an OS all the “interactive”parts. Firstly, my definition of an
OS being formal, I wouldn’t like a fuzzy concept like informal “interactivity” to be used in it. If that’s to mean anything
that the user can directly see on screen, then there are lots of OSes based on dynamic languages, like LISP, FORTH or
RPL, where just everything is thus interactive, so a definition for an OS definitely should include such interactive things.
Now, if “interactive” is to mean “purely interactive”, or “not program-accessible”, that is, “anything that no program
written over the OS can access/modify/simulate” (which would amount to nothing in a “Good” OS, by the way), then
an OS also should include interactive things, to account for all the expectations one has about the system behaving in
such a way when such thing is done (typing such thing on the console, clicking with a mouse, etc). Such behavior is
rightfully described in books teaching how to use such OS. So I see no reason why to exclude these from my definition of
an OS. Surely, I reckon that the concepts of being user-accessible or program-accessible, are indeed interesting ones. But
they are orthogonal concepts to me to what is to be expected from a random computer extracted from a considered set.
Surely the conjunction of these interesting concepts might also be interesting, but these concepts are more expressive
(hence more useful) when kept orthogonal. Else, how would you name the purely interactive part of what I call an OS?
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See that communication between machines
does not always mean that some kind of cable or
radio waves be used to transmit exact messages;
rather, the most used medium for machines to
communicate pertinent have always been humans,
those same humans who talk to each other, read
each other’s books, articles, and messages, then
try to express some of their resulting ideas on ma-
chines.

Particularly in the case above of lots of similar
perfect machines, the concept of an OS on those
machines might have been meaningless, or strictly
limited to a vague or limited common interface
that they may offer to customers; but the concept
of an OS was quite meaningful on the development
platforms for these, where a lot of common infor-
mation is potentially shared by many developers
working more or less independently.

As we saw that the pertinency of a concept
is related to the utility of the described object,
we find the the utility of an OS lies in its dy-
namic aspects. An obvious dynamic aspect of the
OS is how it itself evolves; but from the point of
view of arbitrary user subsystems, the fundamen-
tal dynamic aspect of the OS, that dictates its
Utility, is its propensity to ease communication of
knowledge between the considered subsystems. Of
course, these two aspects of course interact with
each other.

An OS eases communication of knowledge in
that it will allow to pass more Information, by
providing fast broad communication lanes and in-
formation stores, but also in that it gives perti-
nency to this Information, thus transforming it
into Knowledge, by providing a context in which to
interpret received information as unambiguously
as possible, and in which to synthetize new in-
formation that represent as accurately as possi-
ble the ideas that are originally meant. Note that
both Quantity and Quality of Information are be-
ing considered here, and that interaction goes in
both ways.

An OS will usefully evolve when modifica-
tions to a same OS project will allow improve-
ments in the above communication of knowledge.
For obvious reasons of information stability, the
OS, can only evolve slowlier than its user base,
and its design, which is the essence of the OS,
and what manages the pertinency of Informa-

tion, must change slowlier than its implementation
(that drives raw performance).

2.12 Operating System Expressive-
ness

An Operating System is the common context in
which information is passed across the Computing
System. It is the one reference used for arbitrary
subsystems to communicate information.

Hence, the OS dictates not so much the amount
of information that can be passed, which is mostly
limited by the laws of physics and technological
hardware achievements, as it dictates the kind of
information that can be passed, which is a ques-
tion of OS design proper.

All OSes are more or less equal before tech-
nology, which is an external limitation; not all are
equal before design, which is a internal limitation.

For instance, given equivalent post office ad-
ministrations, two countries can ensure similarly
fast and reliable shipping of goods. However, the
actual use of the post office for exchanging goods
will greatly depend on what warranties the state
will give to both people who send and people who
receive goods: how well identified are the parties,
how agreements happen, how contracts are signed,
how signed contracts bind the contractors, how
payment happens, how disagreements are settled,
how well the sent goods are guaranteed to match
the advertisements, how much information people
have on competing solutions, how likely a failure
is likely to be, what support is available in case of
failure, what recourse have parties against breach
of contract by the other party, etc.

Depending on the rules followed by the sys-
tem, which are part of the OS design (according
to our definition of an OS), the same underlying
hardware can be either an efficient way to market
goods, or an inefficient risky gadget.

The Internet is a perfect example of a media
with a great hardware potential for information
passing, but a (currently) poor software infras-
tructure, that needs lots of enhancements before it
can safely be used for large-scale everyday trans-
actions.

This will surely happen, but if things go as can
be predicted, there is a wide margin for improve-
ments.
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The key concept here is the expressiveness of
the OS, which decides what kind of information is
expressible by the OS.

The common misconception about expressive-
ness is that Turing-equivalence be all there is to
it. The theory says that “all (good enough) com-
puting systems are Turing-equivalent”, in that a
good enough system can simulate any other sys-
tem through an simulating interpreter or simula-
tor, so it suffices to provide a Turing-equivalent
system to be able to simulate any other system.
But a simulation of something is not the original
thing. Just like the idea of money is not actual
money3. The mere idea that someone may have
signed a contract is not a binding contract in it-
self. Even the fact of actually signing a contract is
not binding, in absence of any (explicit or implicit)
legal context. If the system won’t enforce your
contracts, no one will. In absence of system sup-
port, the only enforceable contracts you can build
are those where it suffices to dynamically check
compliance from cooperative third-parties, and it
is always legit for a party to fail. The catch is that
a simulator gives no warranty: the meaningful-
ness of the result depend on the objects being ma-
nipulated respecting conventions for the validity of
simulated representations. If the associated war-
ranties can be interned by the very original system,
then indeed that system can express rather than
merely simulate the other system. If these war-
ranties cannot be interned, then an external agent
(most likely, the programmer) will have to enforce
them, and you have to trust him not to fail, with-
out recourse. Arguably, being satisfied with enter-
ing a simulation to enforce the warranties that one
requires from the system is not using the original
system, but building a new system above the first
one, and then limiting interactions with other sub-
systems within that new more expressive system,
while praying helplessly that that no agent in the
original system should break the rules of the new
system. The keyword here being “helplessly”.

Some will suggest paranoidly testing for dy-
namic compliance of every single operation for
which contracts were passed; but such an approach
not only is very expensive when even feasible but
is not a solution (though it might be better than
nothing): run-time checking can detect failure to

comply but it cannot enforce compliance. In ev-
eryday life, it might mean that whenever you pro-
vide a service to a stranger, this stranger may run
away and not pay you back, and you have strictly
no recourse, no possibility to sue or anything. At
times, run-time checking may allow to take appro-
priate counter-measures, but it might be too late.
In the case of a spacerocket (e.g. Ariane V), a
runtime failure means billions of dollars that ex-
plode. In the case of a runtime failure in control
software for a nuclear device (civilian reactor or
military missile), I just don’t dare imagine what it
might mean! In any case, having some paranoid
test code that will terminate the program with
message “ERROR 10043: the nuclear plant is just
going to unexpectedly disintegrate.” won’t quite
help. Finally, the ability to (counter-)strike, in
absence of any system control, brings new dangers
that in turn meet lack of solution, as malevolent
agents may strike at will.

All in all, the expressiveness of an operating
system is its ability to require and provide trust,
to enable exchange of trusted services, above that
which can be built from zero by iterative interac-
tion between agents. Of course, ultimately, this
trust will have to rely on external, human pro-
cesses. The question is how much the system re-
lieves us

EVERYTHING BELOW IS
A DRAFT, AND MUST BE
COMPLETED OR REWRIT-
TEN.....

2.13 Computing System Structure

Up to now, we’ve seen and discussed the external
constraints of an OS, what is its goal, its why, in
the implicit larger Computing System. Now that
this goal is clarified, and keeping it in mind, it’s
time to focus on the internal constraints of an OS,
its structure, its how.

The structure of an OS is the data of its charac-
teristic components, their interrelationships, and
their relationships with the rest of the computing
system. We must thus study once again the struc-
ture of the whole Computing System, of which
the OS is but an aspect. For this, we will once
again find inspiration in considering cybernetical

3Please make me wrong and tell me how to convert my idea of being rich into actually being rich.
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systems in general, and in comparing the situation
with that of another kind of well-known cybernet-
ical systems, human societies. The latter analogy
is more than a mere metaphor, since one aspect of
computing systems is as actual human societies,
with users and programmers being the humans,
and the running programs being activities of these
humans. Indeed, until AIs come into existence,
all programs are human activities (and if AIs ever
exist, they won’t change much of the current dis-
course, if we understand “human” as “sentient be-
ing”).

However, the analogy is certainly not an ex-
act correspondance (an “isomorphism”), and the
way it can validly bring insight into the domain
of computer systems is often more subtle than
may appear at first. Most importantly, it breaks
down (as far as go specific properties not true of
any cybernetical system) when we consider the
computerized part of computing systems, that is,
programs. Indeed, computing systems comprise
as basic identifiable agents not only complex un-
formalizable humans, but also running programs,
that are quite different, simple and formalizable,
and are the center of interest and of information
processing in the system.

There is still some relevance to the division of
computer activities depending on the human per-
sons who run these activities, provide them with
input and use their output; issues of trust between
humans under the multiple roles they assume are
essential in the structure of systems: when two hu-
mans or roles do not trust each other, they must
rely on some kind of physical or logical separation
enforced by a trusted combination of hardware,
software and wetware. The ability to express and
correctly implement such separation in a way that
users can trust is an essential feature of an OS;
When such concerns are not satisfyingly tackled by
the software part of an OS, they will be tackled by
the hardware part, which means buying, deploy-
ing and configuring more computers, one per user
or assumed role, or by the wetware part, by hav-
ing it the human users’ responsibility to never do
anything wrong with the capabilities with which
the software entrusts them whereas it shouldn’t.

But while this trust aspect covers any activ-
ity involving dynamic interaction with the exter-
nal world in any cybernetical system, there is a

peculiarity of computing systems that OS design
can and must take advantage of: the actual data
and programs that are stored in a computer are
purely extensional entities; that is, their digital
description suffice to deduce all there is to them.

extensional vs intentional aspects of program-
ming. to take advantage of it, must respect the
expected intentional modifications. Managing the
coherency between diverging intentions.

Cybernetical systems
of which computing systems are a projection.

Human societies are made of lots of people, each
with its own needs and capabilities, desires and
will. Computer societies are similarly made of
these same people, considered through the limited
scope of the way they interact with computers,
through computers, about computers, and of the
computers themselves.

People communicate with each other, and are
dynamically organized in families, friendships, as-
sociations, companies, countries, confederations;
every group is more or less stable;

User services vs kernel services. Privatization
vs nationalization of services. Rule of Law vs State
Management.

A computing system IS a human society! The
programmers are the humans; the programs are
their extensions.

2.14 Users are Programmers

To program: to influence the future behavior of
the system.

Intentional vs extensional definitions.
Continuum between“Beginner”programmer vs

“Advanced programmer” vs “Programmer demi-
god”. Some will never program. Some will stay
rookies forever. Some will develop good program-
ming skills in very specific domains. Etc.

2.15 The Long Reach of the Pro-
grammer

Two scales in a computing system. Macro-scale:
human minds; heuristic, evolutive. Micro-scale:
automated computer programs; algorithmic, con-
structive.

eager stratification
Artificial barriers due to proprietary software.

See other article MPFAS.
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Historical barriers due to low resource avail-
ability at the time systems were designed: low-
level systems.

universal system vs glue languages
managing complexity vs multiplying services
more than one way to do things? ultimately

the same

2.16 Authority

Most complex enough systems are structured
around a kernel, with “system services” on the one
hand, and “user applications” on the other. This
centralized structuration must thus be some kind
of a natural concept. But why? And what are the
natural attributes of a kernel? What can or can-
not, must or must not, be performed by users or
by the kernel ?

The principal characteristic of kernels is au-
thority. The authority to take effective deci-
sions that affect unwilling actors. A system pro-
grammed by a single man, by a tight team, or more
generally by a one coordinated entity, doesn’t need
a separation of computing systems between sys-
tem and user spaces; it can be just a project for a
conceptually “monolithic” computer system. The
necessity of a well-separated “kernel” appears as
multiple people, who are not otherwise much co-
ordinated, need to cooperate.

Monitor, Runtime, Compiler, Verifier, Trust
Broker.

3 Languages and Expressive-
ness

3.1 Computer Languages

Firstly, let’s settle what we call a ”computer lan-
guage”.

A language is just any means by which humans,
computers, or any active member of a dynamical
system, can communicate information. Computer
languages are languages used to vehiculate infor-
mation about what the computer should do; any
media for exchanging information is a language.

Now, this makes a language even out of point-
and-click-on-window-system, or out of a bitstream
protocol.

So what? Why has a language got to use ASCII
symbols or a written alphabet at all? People use
sounds, the deaf use their hands, various animals
use a lot of different ways to communicate, com-
puters use electrical signals. What makes the lan-
guage is the structure of the information communi-
cated, not the media used for this communication
to happen.

Written or spoken english, though they have
differences, are both english, and recognizable as
such; what makes english is its structures, its pat-
terns, not the media used to communicate those
patterns. These patterns might be represented by
things as physically foreign to each other as vibra-
tions of the air (when one talks), or digital electri-
cal signals on a silicon chip (when your computer
text such as this very article you’re reading).

Of course, symbol-based languages are simpler
to implement on today’s computers, but that’s
only a historical dependency, that may evolve and
eventually disappear.

And of course not all languages are equivalent.
Surely the language used to communicate with a
washing machine is much more limited than what
we use to talk to humans. Still, there is no reason
why not to call it a language.

As with Operating Systems, the problem is not
to define the concept of a computer language, but
to identify what characteristics it should have to
maximize its utility.

So what kind of structure shall a computer lan-
guage have? What makes a language structure
better or more powerful than another? That’s
what we’ll have to inspect.

3.2 Goal of a computer language

[Rename that to ”Computer Language Utility”?]
It should stressed that computer languages

have nothing to do with finished, static ”perfect”
computer programs: those can have been written
in any language, preferably a portable one (for in-
stance, any ANSI supported language, i.e. most
probably the largely supported ”C”, even if I’d
then personally prefer FORTH or Scheme). If all
interesting things already had been said and un-
derstood, and all ever needed programs already
run satisfactorily on current machines, there would
be no more need for a language; but there are in-
finitely many interesting things, and only finitely
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many things said and understood, so a language
will always be needed, and no finite language (a
grammarless dictionary) will ever be enough.

Much like an operating system, being useful
not as a static library, but as a frame for dynamic
computing, computer languages have to do with
programming, with modifyings programs, creat-
ing new programs, not just watching existing ones;
that is, computer languages are for communicat-
ing, be it with other people or a further self. That
is languages are protocols to store and retrieve
documents in such a way that the meaning of a
document, its dynamical properties, its propension
towards evolution and modification, etc, be pre-
served.

Thus, the qualities of a (programming) lan-
guage do not lie only in what can eventually be
done as a static program with the language; or
more precisely, assuming we have all the needed
”library” routines to access the hardware we need,
all Turing-equivalent languages are equally able to
describe any static program. These qualities do
not lie in the efficiency of a straightforward imple-
mentation either, as a good ”optimizing” compiler
can always be achieved later, and speed critical
routines can be included in libraries (i.e. if you re-
ally need a language, then you won’t be a beginner
for a long time at this language).

The qualities of a language lie in the easiness
to express new concepts, and to modify existing
routines.

With this in mind, a programming language is
better than another if it is easier for a human to
write a new program or to modify an existing pro-
gram, or of course to reuse existing code (which is
some extension to modifying code); a language is
better, if sentences of equal meaning are shorter,
or if just if better accuracy is reachable.

3.3 Reuse versus Rewrite

We evaluated a computing system’s utility by the
actual time saved by using them on the long run,
as compared to using other tools instead, or not us-
ing any. Now, personal expediency suggests that
people keep using the same tools as they always
did, however bad they may be, and add function-
alities as they are needed, because learning and
installing new tools is costly. But this leads to
obsolete tools grown with bogus bulging features,

that provide tremendous debugging and mainte-
nance costs. It results in completely insecure soft-
ware, so no one trusts any one else’s software, and
no one wants to reuse other people’s software, all
the more if one has to pay.

For the problem is that, with existing tools,
99.99% of programming time throughout the
world is spent doing again and again the same ba-
sic things that have been done hundreds of times
before or elsewhere. It is common to hear (or read)
that most programmers spend their time reinvent-
ing the wheel, or desesperately trying to adapt ex-
isting wheels to their gear. Of course, you can’t
escape asking students and newbies to repeat and
learn what their elders did, so they can under-
stand it and interiorize the constraints of comput-
ing. The problem is that today’s crippled tools
and closed development strategies make learning
difficult and reuse even more difficult, secure reuse
being just impossible. Thus people spend most of
their time writing again and again new versions of
earlier works, nothing really worth the time they
spend, nothing original, only so they can be sure
they know what it does, and it provides correctly
the particular feature they need that couldn’t be
done before, or at least not exactly. Even then,
they seldom manage to have it do what they want.

Now, after all, you may argue that such a sit-
uation creates jobs, so is desirable; so why bother
?

First of all, there is plenty of useful work to
do on Earth, so time and money saved by not re-
peating things while programming can be spent on
many many other activities (if you really can’t find
any, call me, I’ll show you). Physical resources are
globally limited, so wasting them at doing redun-
dant work is unacceptably harmful.

Paying people to dig holes and fill them back
just to create jobs, as suggested by despicable
economists like J.M. Keynes, is of utmost stu-
pidity. Else, we might encourage random killing,
as it decreases unemployment among potential
victims, and increases employment among morti-
cians, cops, and journalists. If Maynard Keynes’
argument holds, I particularly recommend suicide
to its proponents for the beneficial effect it has
on society. See Bastiat’s works [1] for a refuta-
tion of this myth, more than a hundred years be-
fore stupid socialist politicians apply it: maybe
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spending money to do useless things might have
some beneficial aspects, as for example stimulating
employment; but their global effect is very harm-
ful, as the money and energy spent by central or-
gans to the limited benefit of a few could have
been spent much more usefully for everyone (not
forcibly by a central organ at all), as there are
so many useful things to be done, be it only to
prepare against natural catastrophes, not to talk
about human curses. That useless work policy is
taking a lot from everyone to give little to a few.

Now, rewriting is a serious problem for every-
one. To begin with, rewriting is a loss of time,
that make programming delays quite longer, thus
is very costly. More costly even is the fact that
rewriting is an error prone operation and any-
time during a rewrite, one may introduce errors
very difficult to trace and remove (if need be, one
may recall the consequences of computer failures
in space ships, phone nets, planes). Reuse of ex-
isting data accross software rewrites, and commu-
nication of data between different software proves
being of exorbitant cost. The most costly aspect
of rewriting may also be the fact that any work
has a short lifespan, and will have to be rewrit-
ten entirely from scratch whenever a new problem
arises; thus programming investment cost is high,
and software maintenance is of high cost and low
quality. And it is to be considered that rewrit-
ing is an ungrateful work that disheartens pro-
grammers, which has an immeasurably negative
effect on programmer productivity and work qual-
ity, while wasting their (programming or other)
talents. Last but not least, having to rewrite from
scratch creates an limit to software quality, that
is, no software can be better than what one man
can program during one life.

Rewrite is waste of shared resources by lack
of communication. And all the argument is about
that: not communicating is harmful; any good the
system should encourage communication. Now,
even when current operating systems greatly limit
communication of computer code, they happily
do not prevent humans to communicate informal
ideas of computer code. This is how we could get
where we are.

Therefore, it will now be assumed as proven
that code rewriting is a really bad thing, and that
we thus want the opposite: software reuse, soft-

ware sharing.
We could have arrived at the same conclusion

just with this simple argument: if some software
is really useful (considering the general interest),
then it must be used many, many times, by many
different people, unless it is some kind of compu-
tation with a definitive answer that concerns ev-
erybody (which is difficult to conceive: some soft-
ware that would solve a metaphysical or historical
problem!). Thus, useful software, least it be some
kind of very unique code, is to be reused countless
times. That’s why to be useful, code must be very
easy to reuse.

It will be showed that such reuse is what the
”Object-Orientation” slogan is all about, and what
it really means when it means anything. But
reuse itself introduces new problems that have to
be solved before reuse can actually be possible,
problems as we already saw, of trust: how can
one trust software from someone else? How can
one reuse software without spreading errors from
reused software, without introducing errors due to
misunderstanding or misadaptation of old code,
and without having software obsolescence? We’ll
see what are possible reuse techniques, and how
they cope with these problems.

3.4 Copying Code

The first and the simplest way to reuse code is
just the ”copy-paste”method: the human user just
copies some piece of code, and pastes it in a new
context, then modifies it to fit a new particular
purpose.

This is really like copying whole chapters of a
book, and changing a names to have it fit a new
context; this method has got many flaws and lacks,
and we can both moral and economically object to
it.

First of all, copying is a tedious and thus error-
prone method: if you have to copy and modify the
same piece of code thousands of times, it can prove
a long and difficult work, and nothing will prevent
you from doing as many mistakes while copying or
modifying.

As for the moral or economical objection, it is
sometimes considered bad manners to copy other
people’s code, especially when copyright issues are
involved; sometimes code is protected in such a
way that one cannot copy it easily (or would be
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sued for doing that); thus this copy-paste method
won’t even be legally of humanly possible every-
time.

Then, assuming that the previous problems
could be solved (which is not obvious at all), there
would still be a big problem about code copying:
uncontrolled propagation of bugs and lacks of fea-
ture accross the system. And this is quite a serious
threat to anything like code maintenance; actu-
ally, copying code means that any misfeature in
the code is copied altogether with intended code.
So the paradox of code copying is that bad copying
introduces new errors, while good copying spreads
existing errors; in any case code copying is an error
prone method. Error correction itself is made very
difficult, because every copy of the code must be
corrected according to its own particular context,
while tracking down all existing copies is especially
difficult as code will have been modified (else the
copy would have been made useless by any macro-
defining preprocessor or procedure call in any lan-
guage). Moreover, if another programmer (or the
same programmer some time later) ever wants to
modify the code, he may be unable to find all the
modified copies.

To conclude, software creation and mainte-
nance is made very difficult, and even impossible,
when using copy-paste; thus, this method is defi-
nitely bad for anything but exceptional reuse of a
small number of mostly identical code in a context
where expediency is much more important than
long-term utility. That is, copy-paste is good for
”hacking” small programs for immediate use; but
it’s definitely not a method to program code meant
to last or to be widely used.

3.5 Having an Extended Vocabu-
lary...

The second easiest, and most common way to
reuse code, is to rely on standard libraries. Com-
puter libraries are more like dictionaries and tech-
nical references than libraries, but the name stuck.
So places where one can find lots of such ”libraries”
are called repositories.

Using a standard library is easy: look for what
you need in the standard library’s index, carefully
read the manual for the standard code you use,
and be sure to follow the instructions.

Unhappily, not everything one needs will be
part of a standard library, for standard library in-
clude only things that have been established as
needed by a large number of persons. Patiently
waiting for the functionality one needs to be in-
cluded in a next version of standard libraries is
not a solution, either, because what makes some
work useful is precisely what hasn’t been done be-
fore, so that even if by chance the functionality
gets added, it would mean someone else did the
useful work in one’s place,

..... not everything there are good reasons why
before a standard library is available You wait for
the function you need to be included in the stan-
dard library, and then use it as the manual de-
scribes it when it is finally provided.

standards are long to come, and are even longer
to be implemented the way they are documented.
By that time, you will have needed new not-yet-
standard features, and will have had to imple-
ment them or to use non-standard dictionaries;
when the standard eventually includes your fea-
ture, you’ll finally have to choose between keep-
ing a non-standard program, that won’t be able
to communicate with newer packages, or rewriting
your program to conform to the standard.

Moreover, this reuse method relies heavily on
a central agency for editing revised versions of the
standard library. And how could a centralized
agency do all the work for everyone to be happy ?
Trying to impose reliance on a sole central agency
that is communism. Relying only on multiple con-
current hierarchically organized agencies is feudal-
ism. Oneself is the only thing one can ultimately
rely upon; and liberalism tells us that only by hav-
ing the freeer the information interchange between
people, the better the system.

It’s like vocabulary, culture: you always need
people to write dictionaries, encyclopaedias, and
reference textbooks; but these people just won’t
ever provide new knowledge and techniques, they
rather settle what everyone already know, thus
facilitating communication where people had to
translate between several existing ones more easily.
You still need other people to create new things:
you just can’t wait for what you need to be in-
cluded in the next revision of such reference book;
it won’t ever be if no one does settle it clearly
before it may be considered by a standardization
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commitee.
Now, these standard dictionaries have a tech-

nical problem: the more useful they strive to be,
the larger they grow, but the larger they grow,
the more difficult it gets to retrieve the right word
from its meaning, which is what you want when
you’re writing. That’s why we need some means
to retrieve words from their subject, their relation-
ship with other words; thus we need a language to
talk about properties of words (perhaps the same),
about how words are created, what words are or
not in the standard dictionary and will or will not
be. And this language will have to evolve too, so
a ”meta”-library will not be enough.

When vocabularies grow too large, there ap-
pear ”needle in haystack” problems: though it ex-
ists, you can’t locate the word you’re looking for,
because there’s no better way to look for it than
to cautiously read the entire dictionary until you
come to it...

3.6 ... or a Better Grammar

Furthermore, how is a dictionary to be used ? A
dictionary does not deal with new words; only old
ones. To express non-trivial things, one must do
more than just pronounce a one magic word; one
must combine words into meaningful sentences.
And this is a matter of grammar - the structure
of the language - not vocabulary. We could have
seen that immediately: standard libraries do not
deal with writing new software, but with sharing
old software, which is also useful, but comes sec-
ond, as there must be software before there can be
old software. Computer software was not created,
but develops from a long tradition. So a library
is great for reuse, but actually, a good grammar is
essential to use itself, and reuse in particular.

That is, the right thing is not statically having
a extended vocabulary, but dynamically having an
extended vocabulary; however statically extended,
the vocabulary will never be large enough. Thus
we need good dynamical way to define new vo-
cabulary. Again, it’s a matter of dynamism ver-
sus statism. Current OSes suck because of their
statism. Dynamically having an extended vocab-
ulary means having dynamic ways to extend the
vocabulary, which is a matter of grammar, not dic-
tionary.

Now what does reuse mean for the language

grammar ? It means that you can define new
words from existing ones, thus creating new con-
texts, in which you can talk more easily about your
particular problems. That is, you must be able to
add new words and provide new, extended, dic-
tionaries. To allow the most powerful communi-
cation, the language should provide all meaning-
ful means to create new words. To allow multiple
people whose vocabularies evolve independently to
communicate their ideas, it should allow easy ab-
straction and manipulation of the context, so that
people with different context backgrounds can un-
derstand exactly each other’s ideas.

Thus we have two basic constructions, that
shall be universally available: extracting an ob-
ject’s value in a context (commonly called beta-
reduction), and abstracting the context of an ob-
ject (commonly called lambda-abstraction). A
context is made of variables. When you reduce
an object, you replace occurences of the variable
by its bound value; when abstracting the context,
you create an object with occurences of an un-
bound variable inside, that you may reduce later
after having bound the variable. We thus have a
third operation, namely function evaluation, that
binds an object to a free variable in a context.

For the grammar to allow maximal reuse, just
any object shall be abstractible. But what are
those objects ?

3.7 Abstraction

.....
The theory of abstractions is called lambda-

calculus. There are infinitely many different
lambda-calculi, each having its own properties.

Basically, you start with a universe of base ob-
jects. ....... Base objects, or zero-order objects...
first order ... second order ... nth order ... higher
order ... reflectivity ... beware of reflectivity of
a sub-language, not the language itself ... syntax
control ... .......

.....
(genericity ?)
.....

3.8 Metaprogramming

.....
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3.9 Reflection

.....

3.10 Security

We already saw how the one big problem about
reusing software is it that when you share the soft-
ware, you share its good features, but you also
share its bugs.

Reuse is good when it saves work, but you can’t
call that saving work when it makes you spend
so much more time tracking bugs, avoiding them,
fearing them, trying to prevent their effects, that
you would have been better rewriting the software
from scratch so you could trust it.

That’s why sharable software is useless if it is
not also trustworthy software.

Firstly, we must note that this worry about
security does not come from software sharing; it
is only multiplicated and propagated by software
sharing. Even when you ”share” code only with
your past and future selves, the need arises. The
problem is you’re never sure that a module you use
does what you expect it to. Moreover, to be sure
you agree with the module, you must have some
means to know what you want, and what the au-
thor intended. And this won’t warranty that the
module works as intended by the author. ......

The first idea that arises is then ”programming
by contract”, that is, every time some piece of
code is called, it will first check all the assump-
tions made on the parameters, and when it re-
turns, the caller will check that the result does
fill all the requirements. This may seem simple,
but implementing such technique is quite tricky:
it means that checking the parameters and results
is easy to do, and that you trust the checking code
anyway; it also implies that all the necessary in-
formation for proper checking is computed, which
is loss of space, and that all kind of checking will
take place, which is loss of time. The method is
thus very costly, and what does it bring ? Well,
the program will just detect failure and abort !
Sometimes aborting is ok, when you have time
(and money) to call some maintenance service, but
sometimes it is not: a plane, a train, a boat, or a
spacecraft whose software fail will crash, collide,
sink, explode, be lost, or whatever, and won’t be
able to wait for repairs before it’s too late. And

even when lives or billion dollars are not involved,
any failure can be very costly, at least for the vic-
tim, who may be unable to work. That’s why se-
curity is something important that any operating
system should offer support for. Why integrate
such support in the OS itself, and not on ”higher
layers” ? For the very same reasons that reuse had
to be integrated to the OS: because else, you would
have to use not the system, but a system built on
top of it, with all the related problems, and you
would have to rely on the double (or bigger multi-
ple, in case of multiple intermediate layers) imple-
mentations, that each introduce unsecurity (per-
haps even bugs), unadapted semantics, big loss in
performance.

......

3.11 Trusting programs

So we just saw techniques to design trustworthy
software. Now, how could you be sure they were
well used (if at all), unless you did participate to
the design using them ? These techniques can only
enforce trust to the technician people who have ac-
cess to the internals of the software. What kind of
trust can the user expect from some software s/he
purchased ?

Some companies sell support for software, so
they shall repair or replace computer systems in
case the customer may have problems. Support
is fine indeed; support is even needed by anyone
seriously using a computer (now which kind of sup-
port, it depends on what the customer needs, and
what he can afford). But support won’t ever re-
place reliable software. You never can repair all
the harm that may result from misdesigned soft-
ware when used in critical environment: explod-
ing spacecrafts, shutdown phone networks, missed
surgical operation, miscomputed bank accounts,
blocked factories, all these cost so much that no
one can ever pay back. Thus, however important,
the computer support one gets is independent from
the trustworth of the software one uses.

The computer industry offers no guarantee to
its software’s reliability. You have to trust them,
to trust their programmers and their sellers. But
you shouldn’t, as their interest is to spend as few
money as possible in making their software reli-
able, as long as you buy it. They may have some
ethics that will bind them to design software as
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reliable as they can; but don’t count on ethics to
last indefinitely, when there is. The only way to
make sure they strive is to have some pressure on
them, so that in case they would cheat you, you
threaten software vendors to sue them (and long
when even possible), or to lead a campaign against
buying their products.

The former very hard, when possible at all,
and last for years during the which you must feed
lawyers, be worried, without being sure to win.
The latter means there is fair competition, so you
can choose a product that will replace the one that
fails; it also means that competing software allow
to recover your data from the flawed system, and
run on your former hardware. So even competition
isn’t enough if it’s wild and uncontrolled, and ven-
dors can create de facto monopolies on software or
hardware compatibility (which they do).

The only reason why you should trust soft-
ware is that everyone can, and many do, exam-
ine, use and test freely the software and its actual
or potential competitors, and still keep using it.
We shall insist on there being potential competi-
tors, to which you may compare only if the soft-
ware sources and internal documentation is freely
available, which is open development, as compared
to development with non-disclosure agreements.
This is the one true heart of liberalism.

Now, what if the software you use is too specific
to be used and tested by many ? What if there’s no
way (at reasonable price) to get feedback from the
other actual and potential users of the software ?
What if you don’t have time to choose before you
can get enough feedback to make some worthwhile
opinion ? In those cases, the liberal theory above
won’t apply anymore.

3.12 Program proof

As the need of security in computer systems grows,
one can’t satisfy himself with trusting all the mod-
ules one uses, just because other people were
(alledgedly) happy with them, or the authors of
the modules have a good reputation, or other peo-
ple bought it but there’s no way to get feedback,
or (silly idea) one paid a lot for it, or have been
promised an ”equal” replacement (but no money
back for the other loss) in case it fails.

However, trusting a computer system is fore-
most when lives (or their contents) are involved

by the correct behavior of a module.
Thus, providers of computer system modules

will have to provide some reliable warranty that
their modules cause no harm. They may offer to
pay back any harm that may result from bugs (but
such harm is seldom measurable). Or they may of-
fer a proof of the correctness of their program.

Test suites are pretty, but not very significant.
What are tests in a million cases, when there are
multi-zillions of them, or even infinitely many ?
Test suites are due to fail.

Computers were born from mathematicians
and their theory is largely developped. If com-
puter systems are designed from mathematically
simple elements, that have well-known semantics,
it may be actually possible to prove that the com-
puter system actually does what it is meant to do.

The advantage of a mathematical proof is that,
when done according to the very strict rules of
logic, it is as accurate as a comprehensive test,
even though such test may be impossible because
the number of cases so wondrous (when not infi-
nite) that it would take far longer than the age of
the universe to check each one even at the speed
of light.

Now, proving a program’s correctness is a diffi-
cult task, whose complexity grows uncontrollably
with the size of the program to prove. This is why
the need to use computer systems arises quickly
for such proof. Thus, to trust the proof, you must
also trust the computer proofchecking program.
But this program can be very short and easy to
understand; it can also be made publicly avail-
able, and be examined, used, tested, by all the
computer users and hackers throughout the world,
as explained previously, because it is useful to ev-
eryone indeed. If those requirements are fulfilled,
such program may be really much more reliable
than the most reknowned human doing the same
job.

Anyway, the simplest are the specifications and
proofs, the most reliable they are too. Therefore,
programmers ought to use the programming con-
cepts that allow the easiest proofs, such as pure
lambda-calculus, as used in a language like like
ML. Any kind of thing like side-effects and shared
(global) variables should be avoided whenever pos-
sible. The language syntax should remain always
clear and as localized as possible. As for the effi-
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ciency hungry, we recall that however fast to ex-
ecute, an unreliable program is worthless, while
today’s compiler technology is ready to translate
mathematical abstractions into code that is al-
most as fast as the unreliable software obtained
by the so-called ”optimizing” compilers for unsafe
languages.

Of course, having program proofs does not
mean we should be less careful. If you misspecify
what a program must do, and prove the program
fulfills the bogus specification, you may have a bo-
gus program; so you must be careful to undertand
well what the program is meant to do, and how
to express it to the proofchecker. Also, proofs are
always founded on assumptions. With wrong as-
sumptions, you can prove anything. So program
proofs mean we should always be careful, but we
may at last concentrate on the critical parts, and
not lose our time verifying details, which comput-
ers do much better than us.

Actually, that’s what machines, including com-
puters, are all about: having the human concen-
trate on the essential, and letting the machines do
repetitive tasks.

A programming language is low level when its pro-
grams require attention to the irrelevant.

– Alan Perlis

4 No Computer is an Iland

5 Conclusion

The ideas exposed in this article are not new.
Since the seventeenth century, political thinkers,
economists, physicists, biologists, have discovered
them, which led to theories of democracy, liberal-
ism, thermodynamics, darwinism. The unification
of these into a same set of principles, under a more
general theory of information, is not foreign to the
appearance of computer technology, from the early
essays of Leibniz on automatas, to Wiener’s Cy-
bernetics.

The point of the Tunes project is not to claim
to have invented any of these, neither is it to claim
to realize anything technologically original. The
claim of this article is to consistently acknowledge
the validity of these principles in the computer
world that is so well suited to experiment them,

by its very principle of manipulating information
exactly.

The Tunes project will try to provide an initial
software frame for reliable distributed information
to exist, that is all the more needed that the nec-
essary hardware is already available and underex-
ploited by people following the transient external
aspects of tradition instead of its stable roots.

A Draft

Nota Bene: This section contains many ideas to in-
sert in the text as it is rewritten. The ideas are in
no particular order (not even order of chronologi-
cal appearance), having been put at random places
in the file as they came, or were moved from the
written text, since late january 1995 when redact-
ing this article began.

A.1 About the whole article

Some of this draft should definitely be moved to
other Tunes documentation files, or expanded into
independent articles.

A.2 Part I

Part I would:
1. Show that OS utility lies in its influence on

dynamic CS behavior

2. The OS is not as much the software as the
protocols

3. Show that this influence is in the way the
common background allows to increase sig-
nal/noise ratio, that is to give meaning to
observable data, to provide expressive lan-
guages using the obsersable world as substra-
tum

4. The role of the ”kernel” is to provide some
central authority as a ultimate resource
to arbitrate conflicts and guarantee consis-
tency.

5. Constraints of an Operating System:

(a) it may contains only a tiny fraction of
the total information in the CS, as its
information is bounded by what one
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computer can know, whereas the sys-
tem is bounded by what N computers
can know.

(b) evolves slowly, in a conservative way so
that dataflow can rely on it.

(c)

6. (old stuff)

evolution computing is a recent art whose evolu-
tion is well-known

latest multimedia is the latest OS slogan;
when we see through this veil of illu-
sion, we find

(a) [tradition] the trend is toward adding
new functions to the OS. and the trend
in which they evolve

(b) [u vs p] show that they fail
(c) [u vs p]

see what is their approach,
i.ii. see why it fails

iii. The essence of an OS is no more
in a kernel that would supervise all
forms of communication between
objects, than the essence of civ-
ilization lies in a central admin-
istration that would supervise all
forms of communication between
humans. The essence of an OS is
in the abstract property of allowing
objects to communicate, through
any possible decentralized means;
it is in its utility as a general con-
text for communication, much as
civilization is an intangible set of
said or unsaid traditions and rules,
that allow humans to rely on each
other.

(d) [multiplex] focus on what they should
do, not on what they do (what defines a
place setting is not its having the shape
of a fork or that of a spoon, but its abil-
ity to ease lunch activity, that is, its
function, not its implementation). (xref
to PartII: centralize)

1. Part I:

(a) (I.10 ?)
utility – correlation to static ou dy-
namic features
[current OSes] informational basis that
gives meaning to the flux of raw infor-
mation; dynamical structure

(b) (I.11 ?) kernel, centralism, authority

(c) (I.12 ?) The ultimate source of
meta(n)-information: Man

2. Security is being able to devise arbitrary
contracts, and have the guarantee that if
agreed upon, the contract will be fulfilled.

Systems that don’t allow you to express the
contract you want are stupid unsecure sys-
tems.

Systems that do allow you to express the
contract you want, but have no way to en-
force it (e.g. literate programming) are inef-
fective unsecure systems.

Systems that enforce contracts that you
don’t want are fascist unfree systems.

3. and only such information can eventu-
ally and enrich the whole system. basis
of any reliable information upon which
new information can be built that will
enrich the whole system; when this in-
formation eventually settles, it enriches
in turn the OS, and can serve as a uni-
versal basis for even further enhance-
ments. That is the utility of Operating
Systems.
That’s why the power and long-term
utility of an OS mustn’t be measured
according to what the OS does cur-
rently allow to do, but according to how
easily it can be extended so that more
and more people share more and more
complex software. That is, the power of
an OS is not expressed in terms of ser-
vices it statically provide, but in terms
of services it can dynamically manage;
intelligence is expressed not in terms
of knowledge, but in terms of evolutiv-
ity toward more knowledge. A culture
with a deep knowledge but that would
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prevent or considerably slowdown fur-
ther innovations, like the ancient chi-
nese civilization, would indeed be quite
harmful. An OS providing lots of ser-
vices, but not allowing its user to evolve
would likewise be harmful.

Utility lies in new, original information;
a large body of acquired information is
a sign of past utility, but quite indepen-
dent from current utility.

Again, we find the obvious analogy
with human culture for which the same
stands; the analogy is not fallacious at
all, as the primary goal of an operating
system is allowing humans to commu-
nicate with computers more easily to
achieve better software. So an operat-
ing system is a part of human culture,
though a part that involves computers.

Multiplying the actual services pro-
vided by an operating system may be
an expedient way to solve computer
problems, in the same way that mul-
tiplying welfare institutions may be
an expedient way to solve the ev-
eryday problems of a human system;
the progress of the system ultimately
means that those services will actually
be multiplied in the long run. How-
ever, from the point of view of util-
ity, what counts is not any the objec-
tive state of the system at any given
moment, and its ephemeral advantages,
but the dynamic project of the system
across time, and its smaller, but grow-
ing, long-standing advantages.

the information in an OS is virtually
(not forcibly physically) duplicated at
each node. Hence growing the OS
for ever more feature is harmful, as it
would involve an ever increased waste
of resources duplicated at each node, in-
stead of letting each node develop orig-
inal information in a way adapted to its
immediate environment.

A.3 Users are Program-
mers

The only source of information in the
UCS that we can directly act upon,
hence what counts with respect to util-
ity, is the Humans. Therefore, Operat-
ing Systems should structure the Com-
puting System so that the fullest possi-
ble human creativity is promoted.
.....
The deepest flaw in computer design
is this idea that there is a fundamen-
tal difference between system program-
ming and usual programming, between
usual programming and ”mere” using.
The previous point shows how false is
this conception.
The truth is any computer user,
whether a programming guru or a
novice user, is somehow trying to com-
municate with the machine. The easier
the communication, the quicker better
larger the work is getting done.
Of course, there are different kinds of
use; actually, there are infinitely many.
You can often say that such kind of
computer use is much more advanced
and technical than such other; but you
can never find a clear limit, and that’s
the important point (in mathematics,
we’d say the space of kinds of comput-
ing is connected).
Of course also, any given computer ob-
ject has been created by some user(s),
who programmed it above a given sys-
tem, and is being used by other (or the
same) user(s), who program using it,
above the thus enriched system. That
is, there are computer object providers
and consumers. But anyone can pro-
vide some objects and consume other
objects; providing objects without us-
ing some is unimaginable, while us-
ing objects without providing any is
pure useless waste. The global oppo-
sition between users and programmers
that roots the computer industry is
thus inadequate; instead, there is a lo-
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cal complementarity between providers
and consumers of every kind of objects.

Some say that common users are too
stupid to program; that’s only despis-
ing them; most of them don’t have time
and mind to learn all the subtleties of
advanced programming; Most of the
time, such subtleties shouldn’t be re-
ally needed, and learning them is thus
a waste of time but they often do manu-
ally emulate macros, and if shown once
how to do it, are very eager to use or
even write their own macros or aliases.

Others fear that encouraging people to
use a powerful programming language
is the door open to piracy and sys-
tem crash, and argue that program-
ming languages are too complicated
anyway. Well, if the language library
has such security holes and cryptic syn-
tax, then it is clearly misdesigned; and
if the language doesn’t allow the de-
sign of a secure, understandable library,
then the language itself is misdesigned
(e.g. ”C”). Whatever was misdesigned,
it should be redesigned, amended or
replaced (as should be ”C”). If you
don’t want people to cross an invisible
line, just do not draw roads that cross
the line, write understandable warning
signs, then hire an army of guards to
shoot at people trying to trespass or
walk out of the road. If you’re re-
ally paranoid, then just don’t let people
near the line: don’t have them use your
computer. But if they have to use your
computer, then make the line appear,
and abandon these ill-traced roads and
fascist behavior.

So as for those who despise higher-order
and user-customizability, I shall repeat
that there is NO frontier between us-
ing and programming. Programming is
using the computer while using a com-
puter is programming it. Which does
not mean there is no difference between
various users-programmers; but creat-
ing an arbitrary division in software
between ”languages” for ”programmers”

and ”interfaces” for mere ”users” is ask-
ing reality to comply to one’s sentences
instead of having one’s sentences reflect
reality: one ends with plenty of un-
adapted, inefficient, unpowerful tools,
stupefies all computer users with a lot
of unuseful ill-conceived, similar but
different languages, and wastes a con-
siderable lot of human and computer
resources, writing the same elementary
software again and again.

A.4 Operating System Ker-
nel

In traditional OS design, the ker-
nel is some central piece of soft-
ware through which any communica-
tion between first-class system objects
is done...
But this accounts only for centralized
design; it appears that what system ac-
knowledge as first-class objects are ac-
tually very coarse-grained information
concepts, and that a meaningful study
of information flow should take into ac-
count much finer-grained information,
that such system just do no consider at
all, hence being unadapted to the ac-
tual use that is done of them.
How does this design generalize to arbi-
trary OSes? What do OS kernels pro-
vide that is essential to all OSes, and
what do they do that is costly noise?
To answer such questions, we must de-
part from the traditional OS point of
view that we know is flawed, and see
how are OSes doing, that we recognized
as such, that traditional design refuses
to consider this way, and what the anal-
ogy to human systems lead to.
Thus, we see that of course, central-
ization of the information flow through
the kernel is not needed: hence, infor-
mation most often is much more effi-
ciently passed directly from object to
object without any intermediate. Also,
To conclude, we’ll say that the kernel
is the central authority used to coor-
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dinate software components, and solve
conflicts, in a computer system.

A.5 Current state of Sys-
tem software

It is remarkable that while since their
origins, computer hardware have grown
in power and speed at a constant ex-
ponential rate, system software only
slowly evolved in comparison. It does
not offer any new tools to master the
increasing power of hardware, but only
enhancements of obsolete tools, and
new ”device drivers”to access new kinds
of hardware as they appear. System
software becomes fatware (a.k.a. huge-
ware), as it tries to cope differently with
all the different users’ different but sim-
ilar problems.
It is also remarkable that while new
standard libraries arise, they do not
lead to reduced code size for programs
of same functionality, but to enhanced
code size for them, so that they take
into account all the newly added capa-
bilities.
As a blatant example of the lack of
evolution of system software quality is
the fact that the most popular system
software in the world (MS-DOS) is a
fifteen-year old thing that does not al-
low the user to do either simple tasks,
or complicated ones, thus being a no-
operating system, and forces program-
mers to rewrite low-level tasks every-
time they develop any non-trivial pro-
gram, while not even providing trivial
programs.
This industry-standard has always been
designed as a least sub-system possible
for the Unix system, which itself is a
least subsystem of Multics made of fea-
tures assembled in undue ways on top of
only two basic abstractions, the raw se-
quence of bytes (”files”), and the ASCII
character string.
As these abstractions proved not
enough to express adequately the se-

mantics of new hardware and software
that appeared, Unix has had a huge
number of ad-hoc ”system calls” added,
to extend the operating system in spe-
cial ways. Hence, what was an OS
meant to fit the tiny memory of then
available computers, has grown into a
tentaculous monster with ever grow-
ing pseudopods, that wastes without
counting the resources of the most pow-
erful workstations. And this, renamed
as POSIX, is the new industry standard
OS to come, whose promoters crown as
the traditional, if not natural, way to
organize computations.
Following the same tendency,
widespread OSes are found upon a
large number of human interface ser-
vices, video and sound. This is known
as the ”multi-media” revolution, which
basically just means that your com-
puter produces high-quality graphics
and sound. All that is fine: it means
that your system software grants you
access to your actual hardware, which
is the least it can do!
But software design, a.k.a. program-
ming, is not made simpler for that;
it is even made quite harder: while a
lot of new primitives are made avail-
able, no new combinatorials are pro-
vided that could ease their manipula-
tion; worse, even the old reliable soft-
ware is made obsolete by the new inter-
face conventions. Thus you have com-
puters with beautiful interfaces that
waste lots of resources, but that can-
not do anything new; to actually do
interesting things, you must constantly
rewrite everything from almost scratch,
which leads to very expensive low-
quality slowly-evolving software.

A.6 An Ancien Régime

[= most of the energy is wasted in a
fight for supremacy between monopo-
lies]
The current computing world is any-
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thing but a failure. So many things
are now done by computers that relieve
people from stupid repetitive work, and
so many things are done that just could
not be done without computers, that
nobody can deny the utility of today’s
computers relatively to the implicit ref-
erence being the absence of computers.

But somehow, programming techniques
are finding their limits as programs
reach the size beyond which no human
can fully understand the whole of one.
And the current OS trend, by gener-
ating code bloat, makes those limits
reached much faster than they should,
while wasting lots of human resources.
It is thus necessary to see why current
programming techniques lead to code
bloat, and how this trend can be slowed
down, set back, or reversed.

Of course, we easily can diagnose about
the ”multimedia revolution” that it
stems from the cult of external look, of
the container, to the detriment of the
internal being, the contents; such cult is
inevitable whenever non-technical peo-
ple have to choose without any objec-
tive guide among technical products,
so that the most seductive wins. So
this general phenomenon, which goes
beyond the scope of this paper, though
it does harm to the computing world,
and must be fought there as well as
elsewhere, is a sign that computing
spreads and benefits to a large public;
by its very nature, it may waste a lot
of resources, but it won’t compromise
the general utility of operating systems.
Hence, if there is some flaw to find in
current OS design, it must be looked
for deeper.

Computing is a recent art, and some-
how, it left its Antiquity for its Ancien
Régime. Its world is dominated by a
few powerful companies, that wage a
perpetual war to each other, where At
the same time, there are heavens where
computists can grow in art while freely
benefitting ..... isn’t the deeply rooted

.....
Actually, the ..... the informational sta-
tus of the computer world is quite re-
mindful of the political status of .....

A.7 Computists

A.8 Contents of an Operat-
ing System

What are the characteristic compo-
nents of an operating system ?
Well, firstly, we may like to find some
underlying structure of mind in terms
of which everything else would be ex-
pressed, and that we would call ”ker-
nel”. Most existing OSes, at least, all
those software that claim to be an OS,
are conceived this way. Then, over this
”kernel” that statically provides most
basic services, ”standard libraries” and
”standard programs” are provided that
should be able to do all that is needed
in the system, that would contain all
the system knowledge, while standard
”device drivers” would provide comple-
mentary access to the external world.
We already see why such a concep-
tion may fail: it could perhaps be per-
fect for a finite unextensible static sys-
tem, but we feel it may not be able
to express a dynamically evolving sys-
tem. However, a solid argument why
it shouldn’t be able to do so is not
so obvious at first sight. The key is
that like any complex enough systems,
like human beings, computer have some
self-knowledge. The fact becomes ob-
vious when you see a computer being
used as a development system for pro-
grams that will run on the same com-
puter. And indeed the exceptions to
that ”kernel” concept are those kind of
dynamic languages and systems that
we call ”reflective”, that is, that al-
low dynamical manipulation of the lan-
guage constructs themselves: FORTH
and LISP (or Scheme) development sys-
tems, which can be at the same time ed-
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itors, interpreters, debuggers and com-
pilers, even if those functionalities are
available separately, are such reflective
systems. so there is no ”kernel” design,
but rather an integrated OS.
And then, we see that if the system
is powerful enough (that is, reflective),
any knowledge in the system can be ap-
plied to the system itself; any knowl-
edge is also self-knowledge; so it can
express system structure. As you dis-
cover more knowledge, you also dis-
cover more system structure, perhaps
better structure than before, and cer-
tainly structure that is more efficiently
represented directly than through stub-
born translation to those static kernel
constructs. So you can never statically
settle once and for all the structure of
the system without ampering the sys-
tem’s ability to evolve toward a better
state; any structure that cannot adapt,
even those you trust the most, may
eventually (though slowly) become a
burden as new meta-knowledge is avail-
able. Even if it actually won’t, you can
never be sure of it, and can expect only
refutation, never confirmation of any
such assumption.
The conclusion to this is that you
cannot truly separate a ”kernel” from
a ”standard library” or from ”device
drivers”; in a system that works prop-
erly, all have to be integrated into the
single concept, the system itself as a
whole. Any clear cut distinction in-
side the system is purely arbitrary, and
harmful if not done due to strong rea-
sons of necessity.

A.9 Toward a Unified Sys-
tem

From what was previously said, what
can we deduce about how an OS should
be behaved for real utility ?
Well, we have seen that an OS’ utility is
not defined in terms of static behavior,
or standard library functionality; that

it should be optimally designed for dy-
namic extensibility, that it shall provide
a unified interface to all users, without
enforcing arbitrary layers (or anything
arbitrary at all). That is, an OS should
be primarily open and rational.
But then, what kind of characteristics
are these ? They are features of a com-
puting language. We defined an OS by
its observational semantics, and thus
logically ended into a good OS being
defined by a good way to communicate
with it and have it react.
People often boast about their OS
being ”language independent”, but
what does it actually mean ? Any
powerful-enough (mathematicians say
universal/Turing-equivalent) comput-
ing system is able to emulate any lan-
guage, so this is no valid argument.
Most of the time, this brag only means
that they followed no structured plan as
for their OS semantics, which will lead
to some horrible inconsistent interface,
or voluntarily limited their software to
interface with the least powerful lan-
guage.
So before we can say how an OS should
be, we must study computer languages,
what they are meant to, how to com-
pare them, how they should be or not.

Comparing computers and cars:

(a)i. people say that computers, like
cars, should have everything done
by the machine, with the user never
having to modify anything.

ii. but cars are rarely creative objects
Most people use cars to move from
some place to another, which they
don’t consider as a piece of art, as
a work they produce. They rather
feel it’s some inevitable noise, that
should be reduced as much as pos-
sible.

iii. cars are merely tools to relieve peo-
ple from the burden of displace-
ment, and even then, we don’t for-
bid people from repairing their car
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themselves, or adding something to
it, or making it. Of course, there
are laws about how cars should or
should not be done, that these per-
sons should follow like all manufac-
turers, for security reasons.

iv. Thus, in so far as computers are
tools that people are not devel-
oping, everything should be made
to relieve people from the hassle
of using the computer, to hide all
the nasty details, to provide every-
thing possible to make their daily
computer usage easy and secure,
fool-proof, etc, to the detriment of
raw performance, and even of some
”liberties” that bring only chaos
(like the liberty to drive on either
side of the road would be).

v. This is a sign that Computing as
a project evolves, and the obtained
computerware are objects that this
project leaves behind it; the more
advanced the project, the more
elaborate these objects indeed.

vi. Now, information technology, un-
der its particular form of comput-
ers as well as all of its forms, is pre-
cisely not a complete project, but a
project in continuous development.

vii. Surely, people should not have
to worry about completed parts,
(though they should not be pre-
vented to worry about them ei-
ther).

viii. but more importantly, they should
be able to freely contribute to the
project.....

(b) The problem is that the society as it
is does not regard meta-information as
more powerful than terminal informa-
tion; it tends to judge things according
to their cost instead of judging them
according to their value.
as if only a class of people should learn
to read, and do all the work of reading
in place of other People butis precisely
an art that is ever-developing. It could

be said that what the are not in de-
velopment anymore, that become more
and more objects,

(c) Defining an OS as a set of low-level
abstractions: If freight technology had
been left to similar companies and
academies, they would have put the
horse as the only basic abstraction on
which to build... They could have made
a new standard when it would have
been obvious that steam engines should
have been adopted twenty years ago,
and similarly for all newer technolo-
gies... In any case, it doesn’t directly
tackle the real problem, which is reli-
able transport of goods; it just forces to
people to use standard technology, how-
ever it be obsolete, and prevents them
from developping structures that would
survive this technology.
Also see the disaster of State managing
services.

(d) Under a free programming system, in-
dependent software modules are made
independently for independent pur-
poses. Under current bound pro-
gramming systems, software are not
modular, not independent, and if you
can’t convince an established company
that your purpose does match that of
enough ready-to-pay people (money-
wise), you just can’t write it at all.
Hence Free software means that more
software will be written, that it will
have more feedback, hennce will be bet-
ter in turn, etc.

(e) See the failure of the french industry,
because of its illusory policy of devel-
oping their ”own standard” (i.e. not a
standard, as they’re not strong enough
to impose it by force) in a way bot in-
ternally centralized and externally iso-
lated (!!!); such an industry can survive
only by constantly stealing the taxpay-
ers, and that’s exactly what it has been
doing for decades.

(f) Let’s use the limited metaphor of the
computing system as a human society:
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i.
ii. at its basis is a Constitution, which

has the double role of acknowledg-
ing the few informal rules that are
found as universal requirements for
a just society, and of settling arbi-
trary general settings as an agreed-
upon frame in which those require-
ments can be provided.

iii. then are laws, bills, and conven-
tions, that are arbitrary binding
but renegociable contracts, made
whenever a common solution is
needed to some shared problem.

iv. then are the executives, who must
do the minimal work of verifying
that the legal constraints are al-
ways respected, that information
does flow freely, and that noise and
disinformation are discouraged.

Well, then

i. the operating system ”kernel” is
like State – it regulates interaction
between objects;

ii. the very basics of the system are
like the constitution – a set of infor-
mal rules that explains the general
principles of the system and estab-
lish a common arbitration.

iii. Standard protocols are like Laws
and Rules – they provide common
features at the expense of common
constraints, that defines the way
object interact.

iv. Laws et al should include arbitrary
decisions insofar as and as long
as the fact that an arbitrary deci-
sion is made itself is not arbitrary:
see the classical problem of every-
one driving on the same side of
the roads; whether everyone should
drive on the right side or on the left
side of the road is essentially arbi-
trary; that everyone should either
drive on the right side or on the left
side of the road is not.

v. The most common error about
State and Operating systems is

to believe that either should ac-
tually MANAGE the system and
ultimately do or have do every-
thing about it. That’s completely
WRONG. They should regulate
things and

vi. States are the skeleton of Societies.
if the skeleton was all that counted
in a man, men would be ... skele-
tal! Surely the skeleton is impor-
tant, but it is not it that will make
the man move; it will only serve
as a background that supports the
move.

vii. As an example, the Académie
Française, meant to represent
France’s most proeminent litterary
authors, is NOT meant to write
all possible french litterature, or
to sum it up, or to establish what
litterature should be or not. In-
stead, it will be an authority as
to what are the rules of the french
language and litterature, and keep
a standard of it, not inventing it
but rather making a synthesis of
what exists, so that people speak-
ing french do have a common ref-
erence.

viii. Similarly, the OS authorities
should not provide the ONE TRUE
PROGRAMS that will perform
each single task in the system,
but instead will maintain a public,
open reference of how people are
meant to communicate, and should
be required to communicate when-
ever a disagreement appears that
cannot be otherwise fairly settled.

ix. There need not be a single ad-
ministration that would manage all
laws and regulations. Instead, it is
much better that various special-
ized administrations made of profi-
cient people each manage the fields
where their members are proficient.

x.
xi. Choosing people in each of these

specialized administration is not
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harder than choosing people in
a one centralized administration:
specialization restricts the choice
of potential nominees, and should
also modify the weight of voters
according to their expected knowl-
edge about how to judge profi-
ciency on the specialized subject.

xii. Of course, there need be a consti-
tutional means to settle disagree-
ments, and this means eventu-
ally there is a ultimate author-
ity (because all ultrafilters on fi-
nite sets are principal); but cen-
tral arbitration doesn’t mean cen-
tral management at all. A cen-
tral arbitration would not take
any initiative by itself, and would
not rule anything, only judge be-
tween alternative when asked to.
Refering to it should be an ex-
ceptional event; when a submit-
ted case clearly matches a field for
which an established authority al-
ready exists, the central author-
ity would always follow the opin-
ion of the competent authority, so
that people wouldn’t argue over
and over when the competent au-
thority decided something.

xiii. If privacy was one of the constitu-
tional principles, then laws can’t
uselessly constraining the private
behavior of objects.

xiv. the protection-handling or proof-
checking ”microkernel” is like the
executive – it enforces the respect
of the rules of the system.

Seeing how existing human States and
computer kernels fail to do their job is
left as an exercise to the reader.
The point is that all this infrastruc-
ture is meant to help objects (people)
communicate with each other in fair
terms, so that the global communica-
tion is faster, safer, and more accurate,
with less noise, while consuming less
resources. It should make the objects
nearer to each other.

The role of State id to allow people to
communicate.

To stay politically as neutral as possible
(after all, this is a technical paperr), the
paper should try to not explicitly use a
reference to State, if possible. Instead,
it would conclude with a note accord-
ing to which the very same argument
would hold when applied to human so-
cieties as similar dynamical systems.

(g) Contrarily to the socialists, who say
that a state-ruled society is the End
of History, the Authentic Liberals do
not say that a free, fair, market is the
end of history; on the contrary, they
say that a free, fair, market, is the be-
ginning of history; it is a prerequisite
for information to pass well, for behav-
iors to adapt, for changes to operate,
for history to exist. The freer, fairer
the market, the more history.

(h) It may be said that computing has been
doing quantitative leaps, but has not
done any comparable qualitative leap;
computing grows in extension, but
does not evolve toward intelligence; it
sometimes rather becomes more largely
stupid. This is the problem of oper-
ating systems not having a good con-
ceptual kernel: however large and com-
plete their standard library, their util-
ity will be essentially restricted to the
direct use of the library.

A.10 Newest Operating
Systems: the so-called ”Mul-
timedia revolution”

This phenomenon can also be explained
by the fact that programmers, long
used to software habits from the heroic
times when computer memories were
too tight to contain more than just
the specific software you needed (when
they even could), do not seem to know
how to fill today computers’ memory,
but with pictures of gorgeous women
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and digitized music (which is the so-
called multimedia revolution). Com-
puter hardware capabilities evolved
much quicker than human software ca-
pabilities; thus humans find it simpler
to fill computers with raw data (or al-
most raw data) than with intelligence.
Those habits, it must be said, were es-
pecially encouraged by the way infor-
mation could not spread and augment
the common public background, since
because of lack of theory and practice
of what a freely communicating world
could or should be, only big companies
enforcing ”proprietary” label could up
to now broadcast their software; peo-
ple who would develop original soft-
ware thus had (and sadly still have) to
rewrite everything from almost scratch,
unless they could afford a very high
price for every piece of software they
may want to build upon, without hav-
ing much control on the contents of
such software.

(i) The role of the OS infrastructure in the
computer world is much like that of the
State in human societies: it should pro-
vide justice by guaranteeing, by force
if needs be, that contracts will be ful-
filled, and nothing more. In the case of
computer software, this means that it
will guarantee that contracts passed be-
tween objects will be fulfilled, that ob-
jects should fulfill each other’s require-
ments before they can connect. When
there is no Justice, there is no soci-
ety/OS, but only chaos.

(j) Because it ain’t in the Kernel doesn’t
mean it ain’t done. [Because the gov-
ernment doesn’t do it doesn’t mean no-
body does it].

(k) The Kernel is there as a warrant that
voluntarily agreed contracts between
objects be respected: if function F is
ready to trade a golden coin from some
quantity of gold powder, the kernel will
see that people trading with F will ac-
tually provide the right amount of gold
powder, whereas F will actually return

a gold coin.

A.11 Part II

(a) Part II would discuss programming lan-
guage utility, stating the key concepts
about it.

i. Any reuse includes some rewrite,
which is to minimize. Similarly,
when we ”rewrite”, we often reuse a
lot of the formal and informal ideas
from existing code, and even when
we reinvent, we reuse the inspira-
tion, or sometimes feedback from
people already inspired.

ii. Notably after discussing how to be
able to construct as many new con-
cepts as possible, it should explain
that the key to concept expressiv-
ity (that reflectivity cannot indef-
initely postpone) is their separa-
tion power, and thus the capabil-
ity to affirm one of multiple alter-
natives, to express different things,
to negate and deny things.

(b) Literate Programming, and D.E.
Knuth’s attempts with WEB and
C/WEB (see this interview of D.E.
Knuth http://www.clbooks.com/
nbb/knuth.html) are actually ways
to pass more information about
programs. To pass information
that programming languages them-
selves don’t/can’t/can’t-efficiently
pass, through well-organized human-
readable documentation. This is A
GOOD THING, because there will
ALWAYS be things that humans can
(already) express that machines can-
not express (yet). But this is NOT
THE PANACEA, because there ARE
things that the machines ACTUALLY
COULD express with high-level lan-
guages, that pure literate programming
over low-level languages require the hu-
man to not only to write, but to check,
when a computer is much better suited
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to check them. Knuth completely ig-
nores the meta- capabilities of comput-
ers.

(c) Each independent part is subject to
the limit of a one-man’s understand-
ing so it be reliable. Existing systems
are coarse-grained, which means that
independent parts or large portions of
programs, so that a complete program
is made of few independent parts, and
that total program complexity is lim-
ited to the sum of a few direct human
understandings.

(d) Tunes will be fine-grained and reflec-
tive, so that a complete program is
made of arbitrarily many limited parts,
and can arbitrarily grow in complexity.

(e) Paradoxically, while their user-interface
abstractions are coarse-grained and
”high-level” (in a complex), current
OSes only provide a very low-level set of
programming abstractions to combine
at a fine-grained level for any reliabil-
ity/efficiency. There is double-speach
here, and both users and programmers
are hindered.

(f) If safety criteria are not expressible by
the computer system, then to be safe,
programs must be understandable by
men. And because it is not essentially
harder to express the criteria to the ma-
chine than to another man, this most
likely means that a one man. Because
that man won’t ever be there to main-
tain code, because armies of ”maintain-
ers”won’t replace him, because there is
no tool to safely adapt old programs to
new points of views, then every so of-
ten, code must go to the dust bin. No
wonder why software evolves so slowly:
only some small human experience re-
mains, and even then, because there is
no way to express what that experience
is, it cannot spread in technology fast
ways, but only man to man.

(g) Having generic programs instead of just
specific ones is exactly the main point
that we saw about having a good gram-
mar to introduce new generic objects,

instead of just an increasing number of
terminal, first order objects, that actu-
ally do specific things (i.e. extending
the vocabulary).

(h) What is really useful is a higher-order
grammar, that allows to manipulate
any kind of abstraction that does any
kind of things at any level. We call level
0 the lowest kind of computer abstrac-
tion (e.g. bits, bytes, system words,
or to idealize, natural integers). Level
one is abstractions of these objects (i.e.
functions manipulating them). More
generally, level n+1 is made of abstrac-
tions of level n objects. We see that ev-
ery level is a useful abstraction as it al-
lows to manipulate objects that would
not be possible to manipulate other-
wise.

But why stop there ? Everytime we
have a set of level, we can define a
new level by having objects that ar-
bitrarily manipulate any lower object
(that’s ordinals); so we have objects
that manipulate arbitrary objects of fi-
nite level, etc. There is an unbounded
infinity of abstraction levels. To have
the full power of abstraction, we must
allow the use of any such level; but
why not allow manipulating such full-
powered systems ? Any logical limit
you put on the system may be reached
one day, and this day, the system would
become completely obsolete;

that’s why any system to last must po-
tentially contain (not in a subsystem)
any single feature that may be needed
one day.

The solution is not to offer any bounded
level of abstraction, but unlimited ab-
stracting mechanisms; instead of offer-
ing only terminal operators (BASIC),
or first level operators (C), or even
finite-order offer combinators of arbi-
trary order.

offer a grammar with an embedding of
itself as an object. Of course, a sim-
ple logical theorem says that there is
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no consistent internal way of saying
that the manipulated object is indeed
the system itself, and the system state
will always be much more complicated
than it allows the system to understand
about itself; but the system implemen-
tation may be such that the manipu-
lated object indeed is the system. This
is having a deep model of the system in-
side itself; and this is quite useful and
powerful. This is what I call a higher-
order grammar – a grammar defining a
language able to talk about something
it believes be itself. And this way only
can full genericity be achieved: allowing
absolutely anything that can be done
about the system, from inside, or from
outside (after abstracting the system it-
self).

..... First, we see that the same al-
gorithm can apply to arbitrarily com-
plex data structures; but a piece of code
can only handle a finitely complex data
structure; thus to write code with full
genericity, we need use code as param-
eters, that is, second order. In a low-
level language (like ”C”), this is done
using function pointers.

We soon see problems that arise from
this method, and solutions for them.
The first one is that whenever we use
some structure, we have to explicitly
give functions together with it to ex-
plain the various generic algorithm how
to handle it. Worse even, a function
that doesn’t need some access method
about an the structure may be asked
to call other algorithms which will turn
to need know this access method; and
which exact method it needs may not
be known in advance (because what al-
gorithm will eventually be called is not
known, for instance, in an interactive
program). That’s why explicitly pass-
ing the methods as parameters is slow,
ugly, inefficient; moreover, that’s code
propagation (you propagate the list of
methods associated to the structure –
if the list changes, all the using code

changes). Thus, you mustn’t pass ex-
plicitly those methods as parameters.
You must pass them implicitly; when
using a structure, the actual data and
the methods to use it are embedded to-
gether. Such a structure including the
data and methods to use it is commonly
called an object; the constant data part
and the methods, constitute the pro-
totype of the object; objects are com-
monly grouped into classes made of ob-
jects with common prototype and shar-
ing common data. This is the fun-
damental technique of Object-Oriented
programming; Well, some call it that
Abstract Data Types (ADTs) and say
it’s only part of the ”OO” paradigm,
while others don’t see anything more in
”OO”. But that’s only a question of dic-
tionary convention. In this paper, I’ll
call it only ADT, while ”OO” will also
include more things. But know that
words are not settled and that other
authors may give the same names to
different ideas and vice versa.

BTW, the same code-propagation argu-
ment explains why side-effects are an
especially useful thing as opposed to
strictly functional programs (see pure
ML :); of course side effects compli-
cate very much the semantics of pro-
gramming, to a point that ill use of
side-effects can make a program impos-
sible to understand or debug – that’s
what not to do, and such possibility is
the price to pay to prevent code prop-
agation. Sharing mutable data (data
subject to side effects) between differ-
ent embeddings (different users) for in-
stance is something whose semantics
still have to be clearly settled (see be-
low about object sharing).

The second problem with second or-
der is that if we are to provide func-
tions other functions as parameter, we
should have tools to produce such func-
tions. Methods can be created dynam-
ically as well as ”mere” data, which
is all the more frequent as a pro-
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gram needs user interaction. Thus,
we need a way to have functions not
only as parameters, but also as result
of other functions. This is Higher or-
der, and a language which can achieve
this has a reflective semantics. Lisp
and ML are such languages; FORTH
also, whereas standard FORTH mem-
ory management isn’t conceived for a
largely dynamic use of such feature in a
persistent environment. From ”C” and
such low-level languages that don’t al-
low a direct portable implementation
of the higher-order paradygm through
the common function pointers (because
low-level code generation is not avail-
able as in FORTH), the only way to
achieve higher-order is to build an in-
terpreter of a higher-order language
such as LISP or ML (usually much
more restricted languages are actu-
ally interpreted, because programmers
don’t have time to elaborate their own
user customization language, whereas
users don’t want to learn a new compli-
cated language for each different appli-
cation and there is currently no stan-
dard user-friendly small-scale higher-
order language that everyone can adopt
– there are just plenty of them, either
very imperfect or too heavy to include
in every single application).

With respect to typing, Higher-Order
means the target universe of the lan-
guage is reflective – it can talk about
itself.

With respect to Objective terminology,
Higher-Order consists in having classes
as objects, in turn being groupable in
meta-classes. And we then see that
it does prevent code duplication, even
in cases where the code concerns just
one user as the user may want to con-
sider concurrently two – or more – dif-
ferent instanciations of a same class (i.e.
two sub-users may need toe have dis-
tinct but mostly similar object classes).
Higher-Order is somehow allowing to
be more than one computing environ-

ment: each function has its own in-
dependant environment, which can in
turn contain functions.
To end with genericity, here is
some material to feed your thoughts
about the need of system-builtin
genericity: let’s consider multiplex-
ing. For instance, Unix (or worse,
DOS) User/shell-level programs are
ADTs, but with only one exported
operation, the ”C” main() function
per executable file. As such ”OS”
are huge-grained, with ultra-heavy
inter-executable-file (even inter-same-
executable-file-processes) communica-
tion semantics no one can afford one ex-
ecutable per actual operation exported.
Thus you’ll group operations into single
executables whose main() function will
multiplex those functionalities.
Also, communication channels are
heavy to open, use, and maintain, so
you must explicitly pass all kind of dif-
ferent data & code into single channels
by manually multiplexing them (the
same for having heavy multiple files or
a manually multiplexed huge file).
But the system cannot provide builtin
multiplexing code for each single pro-
gram that will need it. It does provide
code for multiplexing the hardware,
memory, disks, serial, parallel and net-
work lines, screen, sound. POSIX re-
quirements grow with things a compli-
ant system oughta multiplex; new mul-
tiplexing programs ever appear. So the
system grows, while it will never be
enough for user demands as long as all
possible multiplexing won’t have been
programmed, and meanwhile applica-
tions will spend most of their time man-
ually multiplexing and demultiplexing
objects not yet supported by the sys-
tem.
Thus, any software development on
common OSes is hugeware. Huge in
hardware resource needed (=memory -
RAM or HD, CPU power, time, etc),
huge in resource spent, and what is the
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most important, huge in programming
time.

The problem is current OSes provide no
genericity of services. Thus they can
never do the job for you. That why
we really NEED generic system multi-
plexing, and more generally genericity
as part of the system. If one generic
multiplexer object was built, with two
generic specializations for serial chan-
nels or flat arrays and some options for
real-time behaviour and recovery strat-
egy on failure, that would be enough for
all the current multiplexing work done
everywhere.

So this is for Full Genericity: Abstract
Data Types and Higher Order. Now,
if this allows code reuse without code
replication – what we wanted – it also
raises new communication problems: if
you reuse objects especially objects de-
signed far away in space or time (i.e.
designed by other people or an other,
former, self), you must ensure that the
reuse is consistent, that an object can
rely upon a used object’s behaviour.
This is most dramatic if the used object
(e.g. part of a library) comes to change
and a bug (that you could have been
aware of – a quirk – and already have
modified your program accordingly) is
removed or added. How to ensure ob-
ject combinations’ consistency ?

Current common ”OO” languages are
not doing much consistency checks. At
most, they include some more or less
powerful kind of type checking (the
most powerful ones being those of well-
typed functional languages like CAML
or SML), but you should know that
even powerful, such type checking is
not yet secure. For example you may
well expect a more precise behavior
from a comparison function on an or-
dered class ’a than just being ’a->’a-
>{LT,EQ,GT} i.e. telling that when you
compare two elements the result can
be ”lesser than”, ”equal”, or ”greater
than”: you may want the comparison

function to be compatible with the fact
of the class to be actually ordered,
that is x < y&y < z => x < z
and such. Of course, a typechecking
scheme, which is more than useful in
any case, is a deterministic decision sys-
tem, and as such cannot completely
check arbitrary logical properties as ex-
pressed above (see your nearest lec-
tures in Logic or Computation Theory).
That’s why to add such enhanced se-
curity, you must add non-deterministic
behaviour to your consistency checker
or ask for human help. That’s the price
for 100% secure object combining (but
not 100% secure programming, as hu-
man error is still possible in misexpress-
ing the requirements for using an ob-
ject, and the non-deterministic behov-
ior can require human-forced admission
of unproved consistency checks by the
computer).
This kind of consistency security by log-
ical formal property of code is called a
formal specification method. The fu-
ture of secure programming lies in there
(try enquire in the industry about the
cost of testing or debugging software
that can endanger the company or even
human lives if ill written, and insurance
funds spent to cover eventual failures -
you’ll understand). Life concerned in-
dustries already use such modular for-
mal specification techniques.
In any cases, we see that even when
such methods are not used automati-
cally by the computer system, the pro-
grammer has to use them manually, by
including the specification in comments
or understanding the code, so he does
computer work.
Now that you’ve settled the skeleton of
your language’s requirements, you can
think about peripheral deduced prob-
lems.
.....

(i) When the best fit technique is known,
only this technique, and none else,
should be used. any other use may be
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expedient, but not quite useful.
Moreover, it is very hard to antici-
pate one’s future needs; whatever you
do, there will always be new cases you
won’t have.
lastly, it doesn’t replace combinators
And finally, as of the combinatorials al-
lowed allowing local server objects to be
saved by the client is hard to implement
eficiently without the server becoming
useless, or creating a security hole;
..... At best, your centralized code
will provide not only the primitives you
need, but also the combinators neces-
sary; but then, your centralized code is
a computing environment by itself, so
why need the original computing envi-
ronment ? there is obviously a problem
somewhere; if one of the two comput-
ing environment was good, the other
wouldn’t be needed !!!; All these are
problems with servers as much as with
libraries.

(j) With a long training, people can avoid
most bugs that typing would have de-
tected; but this long training has a hu-
man cost. And even then, all bugs are
not guaranteed to be avoided, so insur-
ance is still needed against huge occa-
sional catastrophes, which also involves
a high, non-linear cost.
Actually, the same holds for any kind of
static information that might have been
gathered about programs: you can live
without the computer checking it, by
checking it yourself. But then you must
do computer work, are not guaranteed
to do it properly, and cannot offer the
guarantee to your customers, as youuur
proof is all inside your mind and not re-
peatable!!!

(k) Paul R Wilson said:
BTW, this whole wrangle is exactly
why I recommend avoiding the term
”weakly typed.” It means at least three
different things to different people, and
various combinations to other people:

i. dynamic typing

ii. implicit conversions, and
iii. unchecked types

(l) i. implicit vs explicit is what differ-
entiates a HLL from a LLL. A LLL
will require the pow

ii. not building an artificial border be-
tween programmers and users ⇒
not only the system programming
language must be OO, but the
whole system.

iii. easy user extensibility→ language-
level reflection.

iv. sharing mutable data: how ? →
specifications & explicitly muta-
ble/immutable (or more or less
mutation-prone ?) & time & lock-
ing – transactions.

v. objects that must be shared: all the
hardware resources – disks & al.

vi. sharing accross time → per-
sistence - reaching preci-
sion/mem/speed/resource limit:
what to do ? → exceptions

vii. recovering from exceptional situ-
ations: how ? → continuations
(easy if higher-order on)

viii. tools to search into a library →
must understand all kind of mor-
phism in a logically specified struc-
ture.

ix. sharing accross network → distri-
bution

x. almost the same: tools for merg-
ing code → that’s tricky. Very im-
portant for networks or even data
distributed on removable memory
(aka floppies) – each object should
have its own merging/recovery
method.

xi. more generally tools for having side
effects on the code.

(m) A.12 Structures

we consider Logical Structures:
each structure contains some types,
and symbols for typed constants,
relations, and functions between
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those types. Then we know
some algebraic properties verified
by those objects, i.e. a structure
of typed objects, with a set of con-
stants & functions & relations sym-
bols, et al.
A structure A is interpreted in an-
other structure B if you can map
the symbols of A with combina-
tions of symbols of B (with all the
properties conserved). The sim-
plest way to be interpreted is to be
included.
A structure A is a specialization
of a structure B if it has the same
symbols, but you know more prop-
erties about the represented ob-
jects.

A.13 Mutable objects

We consider the structure of all the
possible states for the object. The
actual state is a specialization of
the structure. The changing states
accross time constitute a stream of
states.

A.14 Sharing Data

The problem is: what to do if
someone modifies an object that
others see ? Well, it depends on
the object. An object to be shared
must have been programmed with
special care.
The simplest case is when the ob-
ject is atomic, and can be read or
modified atomically. At one time,
the state is well defined, and what
this state is what other sharers see.
When the object is a rigid structure
of atomic objects, well, we assume
that you can lock parts of the ob-
ject that must be changed together
– in the meantime, the object is un-
accessible or only readable – and
when the modification is done, ev-
eryone can access the object as be-
fore. That’s transactions.

Now, what to do when the ob-
ject is a very long file (say text),
that each user sees a small part of
it (say a full screen of text), and
that someone somewhere adds or
deletes some records (say a sen-
tence) ? Will each user’s screen
scroll according to the number of
records deleted ? Or will they stay
at the same spot ? The later be-
haviour seem more natural. Thus,
a file has this behaviour that when-
ever a modification is done, all
pointers to the file must change.
But consider a file shared by all
the users across a network. Now,
a little modification by someone
somewhere will affect everyone !
That’s why both the semantics and
implementation of shared objects
should be thought about longly be-
fore they are settled.

A.15 Problem: recovery

What to do when assumptions are
broken by higher priority objects
? e.g. when the user interrupts a
real-time process, when he forces a
modification in an otherwise locked
file, when the process is out of
memory, etc.
Imagine that a real-time process
is interrupted for imperative rea-
sons (e.g. a cable was unplugged;
a higher-priority process took over
the cpu, etc): will it continue where
it stopped ? or will it skip what
was done during the interruption
? Imagine the system runs out of
memory ? Whose memory are you
to reclaim back ? To the biggest
process ? The smallest ? The old-
est ? The lowest real-time priority
? The first to ask for more ? Or
will you ”panic” like most existing
OSes ? If objects spawn, thus fill-
ing memory (or CPU), how to de-
tect ”the one” responsible and de-
stroy it ?
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If an object locks a common re-
source, and then is itself blocked
by a failure or other unwilling la-
tency, should this transaction be
cancelled, so others can access the
resource, or should all the system
wait for that single transaction to
end ?
As for implementation methods,
you should always be aware that
defining those abstraction as the
abstractions they are, rather than
hand-coded emulation for these, al-
lows better optimizations by the
compiler, quicker write phase for
the programmer, neater semantics
for the reader/reuser, no imple-
mentation code propagation for the
reimplementer, etc.
Partial evaluation should also allow
specialization of code that don’t
use all the language’s powerful se-
mantics, so that standalone code
be produced without including the
full range of heavy reflective tools.

(n) all the requirements to be used as for
Tunes, or design a new one if none is
found.

(o) That is, without ADTs, and combi-
nating ADTs, you spend most of your
time manually multiplexing. With-
out semantic reflection (higher order),
you spend most of your time man-
ually interpreting runtime generated
code or manually compiling higher or-
der code. Without logical specification,
you spend most of your time manually
verifying. Without language reflection,
you spend most of your time building
user interfaces. Without small grain,
you spend most of your time manually
inlining simple objects into complex
ones, or worse, simulating them with
complex ones. Without persistence,
you spend most of your time writing
disk I/O (or worse, net I/O) routines.
Without transactions, you spend most
of your time locking files. Without code
generation from constraints, you spend

most of your time writing redundant
functions that could have been deduced
from the constraints.
To conclude, there are essentially two
things we fight: lack of feature and
power from software, and artificial bar-
riers that misdesign of former software
build between computer objects and
others, computer objects and human
beings, and human beings and other
human beings.

(p) A.16 Centralized code

There’s been a craze lately about
”client/server” architecture for com-
puter hardware and software. What is
”client/server” architecture that many
corporations boast about providing ?
.....
conceptually, a server is a centralized
implementation for a library; central-
ized ⇒ coarse-grained; now, coarse
grained ⇒ evil; hence centralized ⇒
evil. we also have centralized ⇒ net-
work bandwidth waste. only ”advan-
tage”: the concept is simple to imple-
ment even by the dumbest program-
mer. Do corporations boast about their
programmers being dumb ?
.....
A very common way to share code is
to write a code ”server” that will in-
clude tests for all the different cases you
may need in the future and branch to
the right one. Actually, this is only
some particular kind of library making,
but much more clumsy, as a single en-
try point will comprise all different be-
haviours needed. This method proves
hard to design well, as you have to take
into account all possible cases to arise,
with predecided encoding, whereas a
good encoding would have to take into
account actual use (and thus be decided
after run-time measurements). The ob-
tained code is slow as it must test many
uncommon cases; it is huge, as it must
take into account many cases, most of
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them seldom or never actually used; it
is also uneasy to use, as you must en-
code and decode the arguments to fit
its one entry point’s calling convention.
It is very difficult to modify, but by
adding new entries and replacing obso-
lete subfunctions by stubs, because it
would else break existing code; it is very
clumsy to grant partial access to the
subfunctions, as you must filter all the
calls; security semantics become very
hard to define.

Centralized code is also called ”client-
server architecture”; the central code is
called the server, while those who use
it are called clients. And we saw that
a function server is definitely some-
thing that no sensible man would use
directly; human users tend to write a
library that will encapsulate calls to
the server. But it’s how most oper-
ating systems and net-aware programs
are implemented, as it’s the simplest
implementation way. Many compa-
nies boast about providing client-server
based programs, but we see there’s
nothing to boast about it; client-server
architecture is the simplest and dumb-
est mechanism ever conceived; even a
newbie is able to do that easy. What
they could boast about would be not us-
ing client-server architecture, but tru-
ely distributed yet dependable soft-
ware.

A server is nothing more than a bo-
gus implementation for a library, and
shares all the disadvantages and lim-
its of a library, with enhanced exten-
sibility problem, and additional over-
head. It’s only advantage is to have a
uniform calling convention, which can
be useful in a system with centralized
security, or to pass the stream of ar-
guments through a network to allow
distant client and servers to communi-
cate. This last use is particularly im-
portant, as it’s the simplest trick ever
found for accessing an object’s multi-
ple services through a single communi-

cation line. Translating software inter-
face from library to server is called mul-
tiplexing the stream of library/server
access, while the reverse translation is
called demultiplexing it.

A.17 Genericity

Then what are ”intelligent”ways to pro-
duce reusable, easy to modify code?
Such a method should allow reusing
code without duplicating it, and with-
out growing it in a both unefficient and
uncomplete way: an algorithm should
be written once and for once for all the
possible applications it may have, not
for a specific one. We have just found
the answer to this problem: the oppo-
site of specificity, genericity.
So we see that system designers are ill-
advised when they provide such spe-
cific multiplexing, that may or may
not be useful, whereas other kind of
multiplexing is always needed (a proof
of which being people always boast-
ing about writing – with real pain –
”client/server” ”applications”). What
they really should provide is generic
ways to automatically multiplex lines,
whenever such thing is needed.
More generally a useful operating sys-
tem should provide a generic way to
share resources; for that’s what an op-
erating system is all about: sharing
disks, screens, keyboards, and various
devices between multiple users and pro-
grams that may want to use those ac-
cross time. But genericity is not only
for operating systems/sharing. Gener-
icity is useful in any domain; for gener-
icity is instant reuse: your code is
generic – works in all cases – so you
can use it in any circumstances where
it may be needed, whereas specific code
must be rewritten or readapted each
new time it must be used. Specificity
may be expedient; but only genericity
is useful on the long run.
Let us recall that genericity is the prop-

42



erty of writing things in their most
generic forms, and having the system
specialize them when needed, instead
of hard-coding specific values (which is
some kind of manual evaluation).
Now, How can genericity be achieved ?

(q) Machines can already communicate;
but with existing ”operating systems”
the only working method they know is
”client/server architecture”, that is, ev-
erybody communicating his job to a one
von Neuman machine to do all the com-
putations, which is limited by the same
technological barrier as before. The
problem is current programming tech-
nology is based on coarse-grained ”pro-
cesses”that are much too heavy to com-
municate; thus each job must be done
on a one computer.

(r) There is lots of laughable hype about
network computers (NCs). NCs
are the hardware embodiment of the
client/server architecture: you plug
NCs on the net, and the only config-
uration needed, that can be done auto-
matically, is assigning them a network
name/address. All the data is on the
server side.
This just has all the advantages and dis-
advantages of the client/server: surely
this ensures consistency of data, but ef-
ficiency is the worst possible among sys-
tems that ensure it, because of central-
ization.
An efficient system would achieve con-
sistency of installed software with-
out sacrificing performance, and with-
out requiring a modification of current
hardware, by doing all the consistency
enforcement in software. Memory that
is local to network hosts is then used
for data cacheing and replication; CPU
resources can be used to do distributed
computations, etc. A software solution
could do things great. A hardware solu-
tion like NCs is just waste of resources.
All the more, NCs do not even have
compatibility, and do not allow any
particular leverage of existing software,

so that they are really a big gratuitous
waste of resources. For a fraction of
the price of all the wasted hardware re-
sources, a proven distributed OS could
be developed and marketed!

(s) i. features: high-level abstraction
Real-time, reflective language
frame, code & data persistence,
distribution, higher order

ii. misfeatures: low-level abstraction
explicit batch processing, adhoc
languages, sessions & files, net-
working, first order

(t) because many semantical changes are
to be manually propagated accross the
whole program.

(u) ”Compilers can not guarantee a pro-
gram won’t crash.” have I been told.
Surely, given an expressive enough lan-
guage, there is no compiler that can tell
for an arbitrary program whether it will
crash or not.
Happily, computers are not used to
run random arbitrary programs!!! Well,
there’s genetic programming and core-
war, fair enough. When you program,

i. you know what you want, so you
know what a correct program is,
and more easily even what a non-
crashing program is.

ii. you write your program specifically
so you can prove to yourself that
the program is correct.

iii. if programming under contract,
you are expected to have done the
former, even though the customer
has no way to check, but perhaps
having you fill red tape.

Well, instead of all these knowledge
and proofs to stay forever untold and
unchecked, it is possible to use a lan-
guage that can express them all! A
computer language could very well ex-
press all the requirements for the pro-
gram, and logically check a proof that
they are fulfilled.
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A.18 Part III

(a) Part III would apply the concepts to
existing technology.

i. It would have to discuss what is
tradition, what is its role, how it
should or not be considered, what
it currently does wrong, how the
Tunes approach inserts in it.

ii. It would debunk myths
iii. Efficiency,Security,Small-grain:

take two, you have the third. That
is, when you need two of them, you
also need the third, but when you
have two of them, you automati-
cally have the third.

iv. with OO, people discovered that
implicit binding is needed. Unhap-
pily, most ”OO” only know as-late-
as-possible binding and no such
thing as reflectivity (=implicitness
control) or migration (=modifica-
tion of implicitness control).

(b) Name:

i. ”Tradition and Revolution” ?
ii. ”Hierarchy vs Liberty” ?
iii. ”Myths and reality” ?
iv. ”The burden of the past” ?
v. ”No computer is an island, entire in

itself” ?

(c) Draft:

i. This part would explain how we ap-
ply the principles from part I and
II to actual computing

ii. It would recall what tradition is,
what the two meanings for revolu-
tion are, and why a one applies and
not the other.

iii. It would try debunk some myths:
iv. Tapes vs Files vs Persistency
v. Linear ASCII Text vs hypertext vs

Meta-text,
vi. Single-Computer OS vs Networked

OS vs Distributed OS
vii. Single-User vs Multi-user vs dy-

namic user

viii. console vs GUI vs decoupling of
programming and IO

ix. They are all instances of the ”Flat
Resource vs Hierarchical Layer-
ing vs Higher-order modularity”
paradigm.

(d) Text as source files: derives from the
silly notion that because people type
programs by hitting a sequence of keys,
each being marked with a symbol, the
program should be stored and manipu-
lated as the sequence of symbol typed.
That because books are read as such
a sequence, because time is linear and
thus any exploration of the text, then
the text should be linear, too. This also
derives from the fact that early comput-
ers where so slow and primitive, with
such tight memory, that programmers
had to care a lot about the represen-
tation of computer data, with the se-
quential nature of their being fed to
the computer through punched paper
or magnetic tape. Derives from be-
lief that the object is its representation,
and that the only valid representation
is the ”usual” one.

(e) The Web allows casual users to pub-
lish new information from where they
are. This is quite a progress. But
only passive documents can be pub-
lished; any inter-site reference is unreli-
able. The most advanced programming
techniques (cgi-bin) only allow unsafe
localized low-level computations.

(f) A common myth about programming
is that low-level programming allows
more efficiency than high-level pro-
gramming. This is completely un-
true, while the opposite is quite true.
Actually, people spend several million
dollars at developping optimizing C
and FORTRAN compilers, but a much
cheaper Common LISP compiler (CMU
Common LISP, developped by a few
students and teachers), achieve similar
performance, while allowing the whole
expressivity of a real high-level lan-
guage. Also, people may see that a
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large part of modern optimizers consist
in making the whole code higher-level,
so it can be better understood and op-
timized by the compiler. Any amount
of time spent at manually optimizing
some routine, could be equally spent at
developping some specialized optimiz-
ing heuristics of same effect on the par-
ticular low-level routine, but that could
generalize to further modified versions
of the routine, or of similar routines,
thus improving reliability and main-
tainability as well as performance, and
saving a lot of time. Of course, this
means that compiler technology with
the ability to accept user-defined op-
timizing heuristics be widely available.
But this is just possible and will be
case. Instead of losing ever more time
at low-level coding, most low-level peo-
ple should consider making such a com-
piler appear sooner. Actually, a trivial
theoretical argument could have told us
that already: high-level programs con-
tain more information and less noise
than low-level programs, hence, can be
manipulated and compiled more effi-
ciently, with proper tools; and anything
that can be done in low-level can be
done at least as well, and surely more
cleanly and genericly, in high-level.

(g) Axioms:

i. ”No man should do what the com-
puter can do quicker for him (in-
cluding time spent to have the
computer understand what to do)”
– that’s why we need to be able to
give order to the computer, i.e. to
program.

ii. ”Do not redo what others already
did when you’ve got more impor-
tant work” – that’s why we need
code reuse.

iii. ”no uncontrolled code propagation”
– that’s why we need genericity.

iv. ”security is a must when large sys-
tems are being designed” – that’s
why we need strong typechecking
and more.

v. ”no artificial border between pro-
gramming and using” – that’s why
the entire system should be OO
with a unified language system, not
just a hidden system layer.

vi. ”no computer user is an island, en-
tire by itself” – you’ll always have
to connect (through cables, flop-
pies or CD-ROMs or whatever) to
external networks, so the system
must be open to external modifi-
cations, updates and such.

(h) Current computers are all based on the
von Neumann model in which a central-
ized unit executes step by step a large
program composed of elementary oper-
ations. While this model is simple and
led to the wonderful computer technol-
ogy we have, laws of physics limit in
power future computer technology to
no more than a grand maximum fac-
tor 10000 of what is possible today on
superdupercomputers.
This may seem a lot, and it is, which
leaves room for many improvement
in computer technology; however, the
problems computer are confronted to
are not limited anyway by the laws of
physics. To break this barrier, we must
use another computer model, we must
have many different machines that co-
operate, like cells in a body, ants in a
colony, neurones in a brain, people in a
society.

(i) More than 95about Interfaces: inter-
faces with the system, interfaces with
the human. Actual algorithms are very
few, heuristics are at the same time few
and too many, because the environment
makes them unreliable. Interfaces can
and should be semi-automatically de-
duced.

(j) More generally, the problem with exist-
ing systems is lack of reflectivity, and
lack of consistency: you can’t simply,
quickly, reliably, automate any kind of
programming. in a way such that sys-
tem consistency be enforced.
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(k) Persistence is necessary for AI:

i. Intelligence is the fruit of a long
tradition. Even a most intelligent
and precocious human being must
be carefully bred for years before
yielding the faintest result.

ii. How could you expect a machine to
become intelligent as soon as it is
built and powered-up, or even after
being powered-up for some hours,
or some days ?

iii. computers currently do not allow
any information to persist reliably
more than a few months, and won’t
translate information from old soft-
ware to newer ones.

iv. Hence, artificial intelligence is not
possible with existing architecture.

v. However, systems with persistent
memory could be a first step to-
ward AI.

(l) unindustrialized countries: the low re-
liability of power feeds make resiliant
persistency a must.

(m) Why are existing OS so bad ? For the
same reason that ancient lore is com-
pletely irrelevant in nowadays’ world:

i. At a time when life was hard, mem-
ories very small and expensive, de-
velopment cost very high, people
had to invent hacker’s techniques
to survive; they made arbitrary de-
cisions so survive with their few re-
sources; They behaved dirtily, and
thought for the short term.

ii. They just had to.
iii. Now, technology has always

evolved at an increasing pace.
What was experimental truth is al-
ways becoming obsolete, and good
old recipes are becoming out of
date. Behaving cleanly and think-
ing for the long term is made pos-
sible.

iv. It is made compulsory.
v. The problem is, most people don’t

think, but blindly follow traditions.

They do not try to distinguish
what is truth and what is false-
hood in traditions, what is still
true, and what no longer stands.
They take it as a whole, and adore
it religiously, sometimes by devo-
tion, most commonly by lack of
thinking, often by refusal to think,
rarely but already too often by a
hypocrit calculus. Thus, they ab-
dicate all their critical faculties, or
use it against any ethics. As a re-
sult, for the large majority of hon-
est people, their morals are an un-
speakable burden, mixing common
sense, valid or obsolete experimen-
tal data, and valid, outdated, or
false rules, connected and tangled
in such a way that by trying to
extract something valid, you come
up with a mass of entangled false
things that are associated, and that
when extirping false things, you of-
ten destroy the few that were valid
together. The roots of their opin-
ions are not in actual facts, but
in lore, hence their being only re-
motely relevant to anything.

vi. Tunes intends to rip off all these
computer superstitions.

(n) A.19 Down to actual
OSes

.....

A.20 Humanly charac-
teristics of computers

persistence, resilience, mobility,
etc....
response to human

(o) The Internet is a progress, in that peo-
ple can publish documents. But these
documents are mostly passive. Those
that are not suppose highly-qualified
specialists to care about;
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A.21 Multiplexing: the
main runtime activity of an
OS

Putting aside our main goal, that is, to
see how reuse is possible in general, let
us focus on this particular multiplexing
technique, and see what lessons we can
learn that we may generalize later.
Multiplexing means to split a single
communication line or some other re-
source into multiple sub-lines or sub-
resources, so that this resource can be
shared between multiple uses. Demul-
tiplexing is recreating a single line (or
resources) from those multiple ones;
but as dataflow is often bi-directional,
this reverse step is most often unsep-
arable from the first, and we’ll only
talk about multiplexing for these two
things. Thus, multiplexing can be used
to share a multiple functions with a sin-
gle stream of calls, or convertly to have
a function server be accessed by multi-
ple clients.
Traditional computing systems often
allow multiplexing of some physical re-
sources, thus spliting them into a first
(but potentially very large) level of
equivalent logical resources. For exam-
ple, a disk may be shared with a file-
system; CPU time can be shared by
task-switching; a network interface is
shared with a packet-transmission pro-
tocol. Actually, what any operating
system does can be considered multi-
plexing. But those same traditional
computing systems do not provide the
same multiplexing capability for arbi-
trary resource, and the user will even-
tually end-up with having to multiplex
something himself (see the term user-
level program to multiplex a serial line;
or the screen program to share a ter-
minal; or window systems, etc), and as
the system does not support anything
about it, he won’t do it the best way,
and not in synergy with other efforts.
What is wrong with those traditional

systems is precisely that they only al-
low limited, predefined, multiplexing of
physical resources into a small, prede-
fined, number of logical resources; there
they create a big difference between
physical resources (that may be multi-
plexed), and logical ones (which can-
not be multiplexed again by the sys-
tem). This gap is completely arbi-
trary (programmed computer abstrac-
tions are never purely physical, neither
are they ever purely logical); and user-
implemented multiplexers must cope
with the system’s lacks and deficiencies.

(p) More generally, in any system, for a
specialized task, you may prefer dumb
workers that know well their job to in-
telligent workers that that cost a lot
more, and are not so specialized. But as
the tasks you need to complete evolve,
and your dumb workers don’t, you’ll
have to throw them away or pay them
to do nothing as the task they knows so
well is obsolete; they may look cheap,
but they can’t adapt, and their overall
cost is high for the little time when they
are active;
In a highly dynamic world, you lose at
betting on dumbness, and should invest
on intelligence.
whereas with the intelligent worker, you
may have to invest in his formation, but
will always have a proficient collabora-
tor after a short adaptation period. Af-
ter all, even the dumb worker had to
learn one day, and an operating system
was needed as a design platform for any
program.

(q) People tend to think statically in many
ways.

(r) At the time when the only metapro-
gramming tool was the human minds
of specialized engineers, because mem-
ories were too small, which is very ex-
pensive and cannot deal with too much
stuff at once, a run-time hardware pro-
tection was wishable to prevent bugs
in existing programs from destroying
data, even though th But now that
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computers have enough horsepower to
be useful metaprogrammers, the con-
straints change completely.

(s) Dispell the myth of ”language inde-
pendence”, particularly about OSes.
which really means ”interfaces to
many language implementations”; any
expressive-enough language can express
anything you expressed in another lan-
guage in many ways.

(t) And as the RISC/CISC then
MISC/RISC concepts showed, the best
way to achieve this is to keep the low-
level things as small as possible, so as to
focus on efficiency, and provide simple
(yet powerful enough) semantics. The
burden of combining those low-level
things into useful high-level objects is
then moved to compilers, that can do
things much better than humans, and
take advantage of the simpler low-level
design.

(u) Now, the description could be restated
as: ”project to replace existing Operat-
ing Systems, Languages, and User In-
terfaces by a completely rethough Com-
puting System, based on a correctness-
proof-secure higher-order reflective self-
extensible fine-grained distributed per-
sistent fault-tolerant version-aware de-
centralized (no-kernel) object system.”

(v) GC&Type checking need be in devel-
oping version, not forcibly in developed
version.

(w) Nobody should be forced by the sys-
tem itself into proving one’s program
correctness with respect to any speci-
fication. Instead, everyone is enabled
to write proofs, and can require proofs
from others.
Thus, you can know precisely what you
have and what you don’t when you run
code. When the code is safe, you know
you can trust it. When it ain’t, you
know you shouldn’t trust it.
Surely, you will object that because of
this system, such man will now require
you to give a proof that you can’t or

won’t give to him, so NOW you can’t
deal with him anymore. But don’t
blame it on the system. If the man
wants the proof, it means he’d expected
your provided software to behave ac-
cordingly in the past, but just couldn’t
require a proof, which was impossible.
By dealing with the man, you’d have
been morally and/or legally bound to
provide the things that he now asks a
proof for. Hence the proofable system
didn’t deprive you from making any
lawful thing. It just helped formalize
what is lawful and what isn’t.
If the man requires so difficult proofs
that he can’t find any provider to that,
he will have to adapt, die, or pay more.
If the man’s requirements are outra-
geously excessive, and no-one should
morally provide him the proofs, then
he obviously is a nasty fascist pig, or
whatever, and it’s an improvement that
no-one will now deal with him.
To sum up things, being able to
write/read/provide/require proofs
means being able to transmit/receive
more information. This means that
people can better adapt to each other,
and any deal that the system will can-
cel was an unlawful deal, replaced by
better deals. Hence this technology in-
creases the expressivity of languages,
and does not decrease it. The system
won’t have any statical specification,
but will be a free market for people
having specifications and people having
matching software to safely exchange
code against money, instead of being a
blind racket.

(x) People like that the cryptic Perl syn-
tax be ambiguous and guess what you
mean from context, because it allows
rapid development of small programs,
and Perl usually guesses right what you
want it to do.
other people will object that because
your programs will then depend on
guesses, you can’t reliably develop large
programs and be confident that you
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don’t depend on a guess that may prove
wrong in certain conditions, or after
you modify your program a bit.
But why should you depend on dynamic
guesses? A Good programming lan-
guage would allow you

i. to control how the guesses are
done, enable some tactics, disable
some others, and write your own.

ii. to make the guesses explicitly ap-
pear or disappear in the program
by automatic semantic-preserving
source-to-source transformations.

iii. resolve all the ambiguities in a
static way through some interac-
tive tool, with a reasonable guess
as the default, but with the pro-
gram’s source being statically dis-
ambiguated by the machine.

Of course, all this require a much more
reflective platform than we have, with
interactive tools being much more inte-
grated to the compiler than currently
is.

(y) an open system, where computational
information can efficiently flow with as
little noise as possible.
Open system means that people can
contribute any kind of information they
want to the available cultural back-
ground, without having to throw every-
thing away and begin from scratch, be-
cause the kind of information they want
to contribute does not fit the system.
Example: I can’t have lexical scopes in
some wordprocessor spell-checker, only
one ”personalized dictionary” personal-
ized at once (and even then, I had to
hack a lot to have more than one dic-
tionary, by swapping a unique global
dictionary). So bad. I’ll have to wait
for next version of the software. Be-
cause so few ask for my feature, it’ll
be twenty years until it makes it to an
official release. Just be patient. Or
if I’ve got lots of time/money, I can
rewrite the whole wordprocessor pack-
age to suit my needs. Wow!

On an open system, all software com-
ponents must come in small grain, with
possibility of incremental change any-
where, so that you can change the
dictionary-lookup code to handle mul-
tiple dictionaries merged by scope, in-
stead of a unique global one, without
having to rewrite everything.
Current attempts to build an open sys-
tem have not been fully successful. The
only successful approach to offer fine-
grained control on objects has been to
let sources freely available, allowing in-
dependent hackers/developers to mod-
ify and recompile; but apart from the
object grain problem, this doesn’t solve
the problems of open software. Other
problems include the fact This offers
no semantical control of seamless data
conservation accross code modification;
contributions are not really incremental
in that the whole software must be inte-
grally recompiled, stopped, relaunched;
Changes that involve propagation of
code among the whole program cannot
be done incrementally with non because
they

(z) ”as little noise as possible”: this means
that algorithmic information can be
passed without any syntactical or ar-
chitectural constraint in it that would
not be specifically intended; that peo-
ple are never forced to say either more
than they mean or less than they mean.
Example: with low-level languages like
C, you can’t define a generic function
to work on any integer, then instanci-
ate to the integer implementation that
fits the further problem. If you define a
function to work on some limited num-
ber type, then it won’t work on longer
numbers than the limit allows, while
being wasteful when cheaper more lim-
ited types might have been used. Then
if some 100000 lines after, you see that
after all, you needed longer numbers,
you must rewrite everything, while still
using the previous version for existing
code. Then you’ll have two versions
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to co-debug and maintain, unless you
let them diverge inconsistently, which
you’ll have to document. So bad. This
is being required to say too much.
And of course, once the library is writ-
ten, in a way generic enough so it can
handle the biggest numbers you’ll need
(perhaps dynamically sized numbers),
then it can’t take advantage of any par-
ticular situation where the known con-
straints on numbers could save order of
magnitudes in computations; of course,
you could still rewrite yet another ver-
sion of the library, adapted to that par-
ticular knowledge, but then you again
have the same maintenance problems as
above. This is being required to say too
little.
Any ”information” that you are re-
quired to give the system before you
know it, without your possibly know-
ing it, without your caring about it,
with your not being able to adjust it
when you further know more, all that
is *noise*.
Any information that you can’t give the
system, because it won’t heed it, refuse
it as illegal, implement in so inefficient
a way that it’s not usable, is *lack of
expressiveness*.
Current languages are all very noisy
and inexpressive. Well, some are even
more than others.
The ”best” available way to circumvent
lack of expressiveness from available
language is known as ”literate program-
ming”, as developed, for example, by
D.E.Knuth with his WEB and C/WEB
packages. With those, you must still
fully cope with the noise of a language
like C, but can circumvent its lack of
expressiveness, by documenting in in-
formall human language what C can’t
express about the intended use for your
objects.
Only there is no way accurately verify
that objects are actually used consis-
tently with the unformal documented
requirements, which greatly limits the

(nonetheless big) interest of such tech-
niques; surely you can ask humans to
check the program for validity with re-
spect to informal documentation, but
his not finding a bug could be evidence
for his unability to find a real bug, as
well as the possible absence of bug, or
the inconsistency of the informal doc-
umentation. This can’t be trusted re-
motely as reliably as a formal proof.
The Ariane V spacecraft software
had been human-checked thousands
of times against informal documenta-
tion, but still, a software error would
have $ 109 disappear in fumes; from
the spacecraft failure report, it can
be concluded that the bug (due to
the predictable overflow of an inappro-
priately undersized number variable)
could have been *trivially* pin-pointed
by formal methods! Please don’t tell
me that formal methods are more ex-
pensive/difficult to put in place than
that the rubbish military-style red-
tape-checking that was used in place.
As a french taxpayer, I’m asking imme-
diate relegation of the responsible egg-
heads to a life-long toilet-washing job
(their status of french ”civil servants”
prevents their being fired). Of course
my voice is unheard.
Of course, there are lots of other soft-
ware catastrophes that more expressive
languages would have avoided, but even
this single 10 G$ crash would pay more
than it would ever cost to develop for-
mal methods and (re)write all critical
software with!

(a) It is amazing that researchers in
Computer Science are not developing
branches of a same software, but every-
time rewriting it all from scratch. For
instance, people experimenting with
persistence, migration, partial evalu-
ation, replication, distribution, paral-
lelization, etc, just cannot write their
part independently from the others.
Their pieces of code cannot combine,
and if each isolated technical point is
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proven possible, they are never com-
bined, and techniques can never really
be fairly compared, because they are
never applicable to the same data.
It is as if mathematicians would have
to learn a completely new language,
a completely new formalism, a com-
pletely new notation, for every math-
ematical theory! As if every book
couldn’t actually assume results from
other books, unless they were proven
again from scratch.
It is as if manufacturers could not as-
semble parts unless they all came from
the same factory.
Well, such phenomena happen in other
place than computer software, too. Ba-
sically, it might be conceived as a ques-
tion of lack of standards. But it’s much
worse with computer software, because
computer software is pure information.
When software is buggy, or unable to
communicate, it’s not worth a damn; it
ain’t even good as firewood, as metal to
melt or anything to recycle.
Somehow, the physical world is a uni-
versal standard for the use of physical
objects. There’s no such thing in the
computer world where all standards are
conventional.
Worse, progress in hardware and soft-
ware implementation techniques is in-
compatible with the advent of definitive
computerware standards, so that either
standards are made ephemeral, or im-
plementational progress is throttled.
And the solution is Reflection.

(b) The other day, I tried to explain what
Reflection is to a mathematician friend
of mine. But Reflection is so natu-
ral a thing for mathematicians (and
my math background is perhaps what
makes it hard for me to live without
it in the computer world), that I could
only try to describe what lack of Reflec-
tion would be in math:
It would mean that you could only
combine theorems that were not de-

velopped with the very same formal-
ism. For instance, you would not
even be able to apply to classic results,
unless you could provide some actual
derivation of both well-known theorems
from scratch using the same formalism,
which for a mathematician would mean
a conventional minimalistic theory like
peano’s axioms for arithmetics, or some
flavor of set theory.
This very notion of ”scratch” will seem
silly to a mathematician, as he knows
from Goedel that there is no absolute
”scratch” from which to build mathe-
matics, so that theorems should instead
be produced in whatever form seems
the most adequate for its current use
(its being proved or reused, etc).
The computer engineer would then say
that ”scratch” is the actual operating
software/hardware he’s got to work on
NOW, which is very concrete. But
this notion of scratch should be silly to
him, too, if only he were conscious how
fast hardware technology evolves, and
building from current ”scratch” only
ties his programs to current technology,
preventing computerware upgrade, or
limiting the benefits thereof.
Reflection does allow to refine imple-
mentations, to move between stan-
dards, to prove new meta-theorems and
use them, to juggle between representa-
tions so as to pick up the most adequate
for a given task without sacrificing con-
sistency, to reuse (meta)theorems from
other people, etc.

A.22 Miscellaneous notes

i. I saw your answer about an article
in the news, so i wanna know, what
is Tunes ?
Well, that’s a tough one. Here
is what I told Yahoo: ”TUNES
is a project to replace exist-
ing Operating Systems, Languages,
and User Interfaces by a com-
pletely rethought Computing Sys-
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tem, based on a correctness-proof-
secure higher-order reflective self-
extensible fine-grained distributed
persistent fault-tolerant version-
aware decentralized (no-kernel) ob-
ject system.”
Now, there are lots of technical
terms in that. Basically, TUNES
is a project that strives to develop
a system where computists would
be much freer than they currently
are: in existing systems, you must
suffer the inefficiencies of
A. centralized execution [=over-

head in context switching],
B. centralized management

[=overhead and single-
mindedness in decisions],

C. manual consistency control
[=slow operation, limitation in
complexity],

D. manual error-recovery [=low
security],

E. manual saving and restoration
of data [=overhead, loss of
data],

F. explicit network access [slow,
bulky, limited, unfriendly, un-
efficient, wasteful distribution
of resource],

G. coarse-grained modularity
[=lack of features, difficulty to
upgrade]

H. unextensibility [=impossibility
to do things oneself, people be-
ing taken hostage by software
providers]

I. unreflectivity [=impossibility
to write programs clean for
both human and computer; no
way to specify security]

J. low-level programming [=ne-
cessity to redo things again
everytime one parameter
changes].

If any of these seems unclear to
you, I’ll try to make it clearer in

ii. Note that Tunes does not have
any particular technical aim per
se: any particular technique in-
tended for inclusion in the system
has most certainly already been
implemented or proposed by some-
one else already, even if we can’t
say where or when. Tunes does not
claim any kind of technical origi-
nality. Tunes people are far from
being the most proficient in any of
the technical matters that they’ll
have to use, and hope that their
code will be eventually replaced by
better code written by the best spe-
cialists wherever applicable. But
Tunes is not an empty project for
that. Tunes does claim to bring
some kind of original information,
just not of a purely technical na-
ture, but instead, as a global frame
to usefully combine those various
techniques as well as arbitrary fu-
ture ones into a coherent system,
rather than have them stay idle
gadgets that can’t reliably commu-
nicate with each other. We Tunes
people hope that our real contribu-
tion will be the very frame in which
the code from those specialists can
positively combine with each other,
instead of being isolated and help-
less technical achievements. Even
if our frame doesn’t make it into
a worldwide standard, we do hope
that our effort will make such a
standard appear sooner than it
would have without us (if it ever
would), and avoid the traps that
we’ll have uncovered.

iii. In this article, we have started
from a general point of view of
moral Utility, and by applying it to
the particular field of computing,
we have deduced several key re-
quirements for computing systems
to be as useful as they could be.
We came to affirm concepts like
dynamism, genericity, reflectivity,
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separation and persistency, which
unhappily no available computing
system fully implements.
So to conclude, there is essentially
one thing that we have to fight:
the artificial informational barri-
ers that lack of expressivity and
misdesign of former software, due
misknowledge, misunderstanding,
and reject of the goals of comput-
ing, build between computer ob-
jects and others computer objects,
computer objects and human be-
ings, human beings and other hu-
man beings.

iv. People are already enough
efficiency-oriented so that TUNES
needn’t invest a lot in it, just pro-
viding a general frame for others
to insert optimization into. In the
case of a fine-grained dynamic re-
flective system, this means that
hooks for dynamic partial evalua-
tion must be provided. This is also
an original idea, that hasn’t been
fully developed. contribution that
TUNES

v. When confronted with some propo-
sition in TUNES, people tend to
consider it separated from the rest
of the TUNES ideas, and they then
conclude that the idea is silly, be-
cause it contradicts something else
in the traditional system design.
These systems indeed have some
coherency, which is why they sur-
vived and were passed by tradition.
But TUNES tries to be much more
coherent even,

vi. When I begun this article, long
ago, I believed that multiplexing
was the main thing an OS would
do. Now, I understand that the
main thing is trust. Multiplexing
can be readily done with a power-
ful language (ok, OSes are not cur-
rently powered by such languages,
so that multiplexing is a system-
level problem, with them!)

vii. Not seeing the importance of
TRUST, I didn’t at the time re-
alize the effect of proprietary vs
free software issues in the design of
the system. Indeed, closed vs open
source has a great impact on the
dynamics of trust-building, on the
need to have features and multi-
plexing in the ”kernel”; on the sepa-
ration between users and program-
mers, etc, etc.

viii. About reuse and copy/paste: copy
paste, of course, is evil. that’s pre-
cisely why I cite it as the simplest
and dumbest way. It’s the way
we use when better ways are avail-
able. We all use it a lot. Making
other ways to reuse code difficult
just makes us use this one, with all
maintainability nightmare and de-
velopment cost that this induces.
Of course there’s even worse. In
a language like unlambda (volun-
tary designed for obfuscation, yet
based on nice theory), you mostly
cannot even copy/paste code then
insert modifications to do ”simple”
things like add a variable (well,
then reason you cannot, and how
it generalizes to other languages
is interesting, and deserves treat-
ment). Not to talk about binary
executable objects, that are typi-
cally a language where you have a
hard time copy/pasting routines (a
reason why we use assemblers and
symbolic languages).

ix. Algorithms provide trust in the
well-defined behaviour of a pro-
gram: the systematic coverage of
every case in some space, the strict
abiding by rules known in advance,
the controlled usage of space and
time resources, are valuable meta-
level knowledge about a program.
“AI” techniques on the other hand,
attempt to be somewhat creative,
and hence unpredictable, and by
definition, try to destroy any such
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meta-level knowledge, although in
most cases, we like to have some
meta-meta-level knowledge about
the goals that the AI seek, and
some double-check on the fulfill-
ment of these goals.
There are many cases such meta-
level knowledge is necessary and
where “AI” kind of techniques just
cannot be used within a program,
or can only be used with a algorith-
mic backup plan, when it is pos-
sible to provide such a plan (for
instance, any somewhat real-time
control problem might like to use
AI to find interesting “optimized”
solutions, but will require an algo-
rithm guaranteed to give a sensible
response in case the AI doesn’t pro-
vide a satisfying answer in time).
However, just because a program’s
run-time must be somewhat algo-
rithmic doesn’t mean that AI can-
not be used during development-
time, compile-time, etc. Hopefully,

AI can provide unpredictable cre-
ative help in generating predictable
stubborn algorithms.
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